您好,欢迎访问三七文档
2月3日知识点知识点一:勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。(2)勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC中,∠C=90°):c2=a2+b2,a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。图(1)中,所以。方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。图(2)中,所以。方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。cab22acb22bca222月3日知识点在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。,所以。知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树2月3日知识点知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(拓展:若c2a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2a2+b2,则△ABC为锐角三角形)。(定理中a,b,c及222abc只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222acb,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)(3)勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;2月3日知识点联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。(4)互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。1.直角三角形有哪些特殊的性质;①角,直角三角型的两锐角互余;②边,直角三角形两直角边的平方和等于斜边的平方,用符号表示:在Rt△ABC中,cba222;③面积,两种计算面积的方法。2.如何判定一个三角形是直角三角形呢?①有一个内角为直角的三角形是直角三角形;②两个内角互余的三角形是直角三角形;③如果三角形的三边长为a、b、c满足cba222,那么这个三角形是直角三角形2月3日知识点1.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4B.16C.D.4或2.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.643.在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A.24B.48C.54D.1084.E为正方形ABCD内部一点,且AE=3,BE=4,∠E=90°,则阴影部分的面积为()A.25B.12C.13D.195.如图:在△ABC中,AB=5cm,AC=4cm,BC=3cm,CD是AB边上的高,则CD=()A.5cmB.cmC.cmD.cm6.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AB的长.7.如图,四边形ABCD中,∠B=90°,AB=BC=,CD=8,AD=10.(1)求∠BCD的度数;(2)求四边形ABCD的面积.
本文标题:勾股定理基础知识点
链接地址:https://www.777doc.com/doc-6617496 .html