您好,欢迎访问三七文档
第1页(共8页)相似三角形的性质培优1.如图,在△ABC中,AD是角平分线,点E在边AC上,且AD2=AE•AB.连接DE.(1)求证:△ABD∽△ADE;(2)若CD=3,CE=,求AE的长.2.如图,在△ABC中,点D,E分别在边AB,AC上,DE、BC的延长线相交于点F,且=.(1)求证:△ADE~△ACB;(2)当AB=12,AC=9,AE=8时,求BD的长.3.如图,在△ABC中,∠ACB=90°,CD是高,BE平分∠ABC.BE分别与AC,CD相交于点E,F.(1)求证:△AEB~△CFB;(2)求证:;(3)若CE=5,EF=2,BD=6.求AD的长.4如图,△ABC中,∠ACB=90°,CD⊥AB于D,点E在AC上,BE交CD于G,EF⊥BE交AB于F,CE:BC:AE=1:2:3.(1)求证:△BCE∽△ACB;(2)求证:BG=EG;(3)求的值.第2页(共8页)5.已知:如图,在△ABC中,D是BC边上的中点,且DE⊥BC,AD=AC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:∠ECB=∠B;(2)求证:△ABC∽△FCD;(3)若△FCD的面积为7.5,BC=10,求DE的长.6.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形FGHN的边FG在BC上,点N,H分别在边AB、AC上,(1)若NH:HG=1:2,求此矩形的面积.(2)若FGHN是正方形,求边长。(3)当矩形长宽为多少时,矩形面积最大,最大值是多少。7.如图,在△ABC中,点PQ分别在AB,AC上,且PQ∥BC,PM⊥BC于点M,QN⊥BC于点N.AD⊥BC于点D,交PQ于点E,且AD=BC.(1)求AE:PQ的值;(2)请探究BM,CN.QN之间的等量关系,并说明理由;(3)连接MQ,若△ABC的面积等于8,求MQ的最小值.第3页(共8页)8.如图,在平行四边形ABCD中,对角线AC、B的交于点O、M为AD上点,且DM=2MA,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DMN的面积为4,求四边形ABNM的面积.9.如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.10.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB=12,DE=1,BM=5,求DN的长.11.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作DEFG.(1)求DEFG对角线DF的长;(2)求DEFG周长的最小值;(3)当DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值.第4页(共8页)12.如图,在△ABC中,已知AB=AC=6,BC=9,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.13.(1)如图1所示,在Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,点E在直角边BC上,若∠CDE=45°,求证:△ACD∽△BDE.(2)如图2所示,在矩形ABCD中,AB=4cm,BC=10cm,点E在BC上,连接AE,过点E作EF⊥AE交CD(或CD的延长线)于点F.①若BE:EC=1:9,求CF的长;②若点F恰好与点D重合,请在备用图上画出图形,并求BE的长.14.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.第5页(共8页)15.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动.两点同时出发.速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.16.如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:四边形DBFE的面积S=___,△EFC的面积S1=___,△ADE的面积S2=___.探究发现(2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S2=4S1S2.拓展迁移(3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积。第6页(共8页)17.如图,在矩形ABCD中,AB=6,BC=8,点P从点C出发,沿CB向点B匀速运动,速度为每秒1个单位,过点P作PM⊥BC,交对角线BD于点M.点Q从点B出发,沿对角线BD向点D匀速运动,速度为每秒1个单位.P、Q两点同时出发,设它们的运动时间为t秒(0t8).(1)当PQ⊥BD时,求出t的值;(2)连接AM,当PQ∥AM时,求出t的值;(3)试探究:当t为何值时,△PQM是等腰三角形?1.如图,菱形ABCD中,EF⊥AC于点H,分别交AD及CB的延长线交于点E、F,且AE:FB=1:2,则AH:HC的值为______.2.如图,在平行四边形ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知△AEF的面积=1,则平行四边形ABCD的面积是______.3.如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.则的值是______.4.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,点M,N在DC边上,第7页(共8页)且MN=DC,连接NE,MF.若AB=12,则图中的阴影面积是______.5.如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是______.6.如图,在△ABC中,D、E、F分别是BC、AB、AC上的点,EF∥BC,,且△DEF的面积为4,则△ABC的面积是______.7.如图,已知点M为平行四边形ABCD边AB的中点,线段CM交BD于点E,S△BEM=2,则图中阴影部分的面积是______.8.如图,△AOB是直角三角形,∠AOB=90°,点A在反比例函数y=(x>0)的图象上,点B在反比例函数y=﹣(x<0)的图象上,则的值是______.9.如图,在正方形AOCB中,AB=3,点A在x轴的负半轴上,点C在y轴的正半轴上,点P在边AB上,且OP交AC于点Q,函数y=(x<0)的图象经过点Q.若S△APQ=S△OCQ,则k的值是______.10.如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,直线l1,l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=______.11.如图,在菱形ABCD中,已知AB=4,∠ABC=60°,∠EAF=60°,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∽△EFC;④若∠BAE=15°,则点F到BC第8页(共8页)的距离为2﹣2.则其中正确结论的有______________.12.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE、BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有_____________.13.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G.则下列结论:①△ADF∽△GCE;②△AFB∽△ABE;③CG=3BG;④AF=EF,其中正确的有_____________.14如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF=2,则S△ABE=______.15.将一幅三角尺(Rt△ACB中,∠ACB=90,∠B=60,在Rt△EDF中,∠EDF=90,∠E=45)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转角α(0<α<60°),DE'交AC于点M,DF’交BC于点N,则的值为______.16.如图,在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为_______.17.如图,△ABC的面积为S.点P1,P2,P3,…,Pn﹣1是边BC的n等分点(n≥3,且n为整数),点M,N分别在边AB,AC上,且=,连接MP1,MP2,MP3…MPn﹣1连接NB,NP1,NP2…MPn﹣1,线段MP1与NB相交于点O1,线段MP2与NP1相交于点O2,线段MP3与NP2相交于点O3,…,线段MPn﹣1与NPn﹣2相交于点On﹣1,则△NO1P1,△MO2B2,△MO3P3,…△MOn﹣1Pn﹣1的面积和是________.(用含有S与n的式子表示)
本文标题:相似三角形培优三
链接地址:https://www.777doc.com/doc-6645357 .html