您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 【人教版】18.2.2菱形的判定说课稿
1菱形的判定说课稿李贵武一、说教材1、教材的地位和作用本节课选自人教版八年级下册第十九章第二节第二课时,主要内容是菱形的判定,尝试从不同角度寻求菱形的判定方法,并能有效地解决问题。它是在探究平行四边形和矩形的判定方法之后,又一个特殊四边形判定方法的探索,它不仅是三角形、四边形知识的延伸,更为探索正方形的性质与判定指明了方向。学习本课时,通过观察猜想,归纳证明,培养学生的推理能力和演绎能力,为以后圆等知识的学习奠定基础。2、教学目标根据本节课的教学内容,结合新课标理念,我从四个方面制定了教学目标:知识技能:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法。数学思考:(1)经历利用菱形的定义探究菱形其他判定方法的过程,培养学生的动手实验、观察、推理意识,发展学生的形象思维和逻辑推理能力。(2)根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力和演绎能力。解决问题:(1)尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝试评价不同判定方法之间的差异。(2)通过对菱形判定过程的反思,获得灵活判定四边形是菱形的经验。情感态度:在探究菱形的判定方法的活动中获得成功的体验,通过运用菱形的判定和性质,锻炼克服困难的意志,建立自信心。3、教学重点、难点基于本节课的主要内容是围绕着菱形的判定方法而展开的,菱形的判定方法在本节课中处于核心地位,所以我确定本节课的教学重点为菱形判定方法的探究。由于学生还没有具备辨证分析问题的能力,所以我确定本节课的教学难点是菱形判定方法的探究及灵活运用。4、教材处理根据教学目标,为突出重点,突破难点,在探索菱形的有关对角线的判定定理时,用教具演示,四边形的两条对角线在保持互相平分的前提下进行转动,当它们的位置关系是垂直时,平行四边形变为菱形,给学生以直观感受,印象2深刻;在探索菱形的另一个判定定理时,让学生根据它的特殊点去猜想边之间满足的关系,从而得出定理,拓展学生的思维空间。二、说教法1、创设问题情境,恰当设疑,引发学生兴趣。2、采用直观操作和几何论证相结合的探究式的教学方法。既关注学生学习的结果,更关注他们学习的过程,进一步培养学生的形象思维和逻辑推理能力。3、吃透教材、把握重点、分散难点、面向全体学生,因材施教。三、说学法在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。四、说教学过程活动1、引入新课,激发兴趣首先,复习菱形的定义和性质,学生对菱形再认识,尤其对菱形的特殊性质的认识。通过教师恰当设疑并进一步讲授,明确菱形的第一种判定方法,直接引入了活动主题。同时,引出课题——菱形还其它的判定方法吗?激发学生探究的欲望。活动2、探究与归纳菱形的第二个判定方法让学生真实经历菱形判定方法的形成过程,设计了一个探究活动。用一长一短两根细木条的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。教师引导学生观察四边形的特征,通过观察,发现这个四边形总是平行四边形,并口头完成证明。学生继续转动木条,探究木条具备怎样的条件就可变为菱形,学生经过实验操作,开展独立思考或合作学习。学生代表上台对猜想(即当木条互相垂直时,四边形为菱形)加以论证。归纳菱形的判定定理:对角线互相垂直的平行四边形是菱形。设计意图:通过实验操作,巩固了平行四边形的判定方法,培养学生的观察能力和推理能力,经历探究物体与图形的形状、大小、位置关系和变换的过程,培养猜想意识,感受直观操作得出猜想的便捷性,培养学生的观察、实验、猜想等合情推理能力;通过对猜想的论证,体现了直观操作与逻辑推理的有机结合,让学生进一步认识逻辑推理的必要性,很好地突出了教学的重点。活动3、菱形第二个判定方法的应用例3、如图,□ABCD的对角线AC、BD相交于点O,且AB=5,AO=4,BO=3,3求证:□ABCD是菱形。学生分析题意,通过交流,明确解体思路。教师组织学生交流,并引导学生选择适当的判断方法,指导学生完成论证,并规范证明。设计意图:从简单问题出发,让学生在证明过程中掌握菱形的第二种判别方法的应用,达到“学数学,用数学”的目的,进一步培养学生解决问题能力和推理论证能力。活动4、探究与归纳菱形的第三个判定方法先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?学生观察思考后,展开讨论,共同寻求这个四边形是菱形的原因。教师深入到学生当中,指导学生探究。学生代表发言,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形,教师指导学生规范完成几何论证过程。设计意图:通过多媒体动画演示,让学生从直观操作的角度去发现问题,使探究的问题形象化、具体化,培养学生形象思维。通过说明理由,利用平行四边形的判定和菱形的定义,判定该四边形是菱形,进一步培养学生抽象思维,本活动进一步体现了实验几何和论证几何的有机结合。活动5、菱形第三个判定方法的应用如图,顺次连接矩形ABCD各边的中点,得到四边形EFGH,求证:四边形EFGH是菱形。学生独立思考,教师点拨证明的思路。学生板演,教师点评。设计意图:通过添加教师教学用书上的一道范例题,学生在做题之后,进一步掌握四边相等的四边形是菱形的这一判定方法。既巩固了三角形的中位线定理和矩形的性质,又达到了学以致用的目的,培养了学生的应用意识。活动6、随堂练习几道简单的判断题和填空题,教师巡视,引导学生;学生课堂练习,然后上台演示自己的答案,并与同伴交流,给学生一个独立的思考和练习时间,加4深学生对菱形判定方法的理解与运用,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,达到及时查漏补缺的效果。活动7、评价和反思1、通过探究,本节课你得到了哪些结论?有什么认识?2、菱形的判定方法有哪些?学生反思学习的过程,教师聆听学生的认识和感受。通过评价与反思,让学生理清本节课的知识结构,掌握菱形的三种判定方法,感受探究过程中的乐趣,体验克服困难的过程,树立自信心。课后作业:教科书第60页习题18.2第6题,61页习题18.2第10题。本节课活动2通过学生动手实验观察、发现、推理等环节,探究出菱形的判定方法。活动4通过多媒体演示画图过程,学生观察、推理、探究出菱形的另一种判定方法。活动2和活动4是本节课的重点。活动3和活动5都是运用菱形的判定证明,这是本节难点。为了突破难点,采用学生独立思考,教师引导,学生交流的方式分析问题并解决问题。
本文标题:【人教版】18.2.2菱形的判定说课稿
链接地址:https://www.777doc.com/doc-6660065 .html