您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 人教版八年级上册数学14.3.2-公式法
14.3因式分解14.3.2公式法第一课时第二课时人教版数学八年级上册第一课时平方差公式a米b米b米a米(a–b)如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?a2–b2=(a+b)(a–b)导入新知1.探索并运用平方差公式进行因式分解,体会转化思想.2.能综合运用提公因式法和平方差公式对多项式进行因式分解.素养目标用平方差公式进行因式分解多项式a2–b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式))((baba–+=22ba–))((22bababa–+=–整式乘法因式分解两个数的平方差,等于这两个数的和与这两个数的差的乘积.平方差公式:探究新知知识点1想一想√√××辨一辨:下列多项式能否用平方差公式来分解因式,为什么?√√★符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成:()2–()2的形式.两数是平方,减号在中央.(1)x2+y2(2)x2–y2(3)–x2–y2–(x2+y2)y2–x2(4)–x2+y2(5)x2–25y2(x+5y)(x–5y)(6)m2–1(m+1)(m–1)探究新知2(1)49;x例1分解因式:22(2)3x(23)(23);xx22(2)()().xpxqaabb(+)(–)a2–b2=解:(1)原式=2x32x2x33()()()()xpxqxpxq(2)原式(2)().xpqpq22()()xpxqab素养考点1利用平方差公式分解因式的应用探究新知+方法点拨公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.探究新知1.分解因式:(1)(a+b)2–4a2;(2)9(m+n)2–(m–n)2.=(2m+4n)(4m+2n)解:(1)原式=(a+b–2a)(a+b+2a)=(b–a)(3a+b);(2)原式=(3m+3n–m+n)(3m+3n+m–n)=4(m+2n)(2m+n).若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解.巩固练习例2分解因式:443(1);(2).xyabab解:(1)原式=(x2)2–(y2)2=(x2+y2)(x2–y2)分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解,直到不能分解为止.=(x2+y2)(x+y)(x–y);(2)原式=ab(a2–1)分解因式时,一般先用提公因式法进行分解,然后再用公式法.最后进行检查.=ab(a+1)(a–1).素养考点2多次因式分解探究新知方法点拨分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.必须进行到每一个多项式都不能再分解因式为止.探究新知2.分解因式:(1)5m2a4–5m2b4;(2)a2–4b2–a–2b.=(a+2b)(a–2b–1).=5m2(a2+b2)(a+b)(a–b);解:(1)原式=5m2(a4–b4)=5m2(a2+b2)(a2–b2)(2)原式=(a2–4b2)–(a+2b)=(a+2b)(a–2b)–(a+2b)巩固练习例3已知x2–y2=–2,x+y=1,求x–y,x,y的值.∴x–y=–2②.解:∵x2–y2=(x+y)(x–y)=–2,x+y=1①,联立①②组成二元一次方程组,解得:1,23.2xy素养考点3利用因式分解求整式的值探究新知方法总结:在与x2–y2,x±y有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.3.已知x–y=2,x2–y2=8,求x+y的值.解:由题意得:(x+y)(x–y)=8,∵x–y=2,∴2(x+y)=8,∴x+y=4.巩固练习例4计算下列各题:(1)1012–992;(2)53.52×4–46.52×4.解:(1)原式=(101+99)(101–99)=400;(2)原式=4(53.52–46.52)=4(53.5+46.5)(53.5–46.5)=4×100×7=2800.方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.素养考点4利用因式分解进行简便运算探究新知4.用平方差公式进行简便计算:(1)38²–37²(2)213²–87²(3)229²–171²(4)91×89解:(1)38²–37²=(38+37)(38–37)=75解:(2)213²–87²=(213+87)(213–87)=300×126=37800解:(3)229²–171²=(229+171)(229–171)=400×58=23200解:(4)91×89=(90+1)(90–1)=90²–1=8100–1=8099巩固练习例5求证:当n为整数时,多项式(2n+1)2–(2n–1)2一定能被8整除.即多项式(2n+1)2–(2n–1)2一定能被8整除.证明:原式=(2n+1+2n–1)(2n+1–2n+1)=4n•2=8n,∵n为整数,∴8n被8整除,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除.素养考点5利用因式分解进行证明探究新知5.若a,b,c是三角形的三边,且满足关系式a2–2bc=c2–2ab,试判断这个三角形的形状.解析:已知等式变形后,利用完全平方公式及平方差公式分解,得到a=c,即可确定出三角形形状.解:∵a2–2bc=c2–2ab,∴(a2–c2)+2ab–2bc=0,(a+c)(a–c)+2ab–2bc=0,∴(a–c)(a+c+2b)=0.∵a+c+2b≠0,∴a–c=0,即a=c,∴这个三角形是等腰三角形.巩固练习1.(2018•济宁)多项式4a–a3分解因式的结果是()A.a(4–a2)B.a(2–a)(2+a)C.a(a–2)(a+2)D.a(2–a)2连接中考2.(2018•苏州)若a+b=4,a–b=1,则(a+1)2–(b–1)2的值为.解析:∵a+b=4,a–b=1,∴(a+1)2–(b–1)2=(a+1+b–1)(a+1–b+1)=(a+b)(a–b+2)=4×(1+2)=12.B12巩固练习1.下列多项式中能用平方差公式分解因式的是()A.a2+(–b)2B.5m2–20mnC.–x2–y2D.–x2+9D2.(2018•邵阳)将多项式x–x3因式分解正确的是()A.x(x2–1)B.x(1–x2)C.x(x+1)(x–1)D.x(1+x)(1–x)D3.若a+b=3,a–b=7,则b2–a2的值为()A.–21B.21C.–10D.10A课堂检测基础巩固题4.把下列各式分解因式:(1)16a2–9b2=_________________;(2)(a+b)2–(a–b)2=_________________;(3)(2018•徐州)因式分解:2x2–8=_________________;(4)–a4+16=_________________.(4a+3b)(4a–3b)4ab(4+a2)(2+a)(2–a)5.若将(2x)n–81分解成(4x2+9)(2x+3)(2x–3),则n的值是_____________.42(x+2)(x–2)课堂检测基础巩固题1.已知4m+n=40,2m–3n=5.求(m+2n)2–(3m–n)2的值.原式=–40×5=–200.解:原式=(m+2n+3m–n)(m+2n–3m+n)=(4m+n)(3n–2m)=–(4m+n)(2m–3n),当4m+n=40,2m–3n=5时,能力提升题课堂检测2.如图,在边长为6.8cm正方形钢板上,挖去4个边长为1.6cm的小正方形,求剩余部分的面积.解:根据题意,得6.82–4×1.62=6.82–(2×1.6)2=6.82–3.22=(6.8+3.2)(6.8–3.2)=10×3.6=36(cm2)答:剩余部分的面积为36cm2.课堂检测能力提升题(1)992–1能否被100整除吗?解:(1)因为992–1=(99+1)(99–1)=100×98,所以,(2n+1)2–25能被4整除.(2)n为整数,(2n+1)2–25能否被4整除?所以992–1能被100整除.(2)原式=(2n+1+5)(2n+1–5)=(2n+6)(2n–4)=2(n+3)×2(n–2)=4(n+3)(n–2).拓广探索题课堂检测平方差公式分解因式公式a2–b2=(a+b)(a–b)步骤一提:公因式;二套:公式;三查:多项式的因式分解有没有分解到不能再分解为止.课堂小结第二课时完全平方公式我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?导入新知2.能较熟练地运用完全平方公式分解因式.1.理解完全平方公式的特点.素养目标3.能综合运用提公因式、完全平方公式分解因式这两种方法进行求值和证明.1.因式分解:把一个多项式转化为几个整式的积的形式.2.我们已经学过哪些因式分解的方法?提公因式法平方差公式a2–b2=(a+b)(a–b)用完全平方公式分解因式知识点13.完全平方公式(a±b)2=a2±2ab+b2探究新知回顾旧知你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?同学们拼出图形为:aabbabababa²b²ab探究新知探究这个大正方形的面积可以怎么求?a2+2ab+b2(a+b)2=ababa²ababb²(a+b)2a2+2ab+b2=将上面的等式倒过来看,能得到:探究新知a2+2ab+b2a2–2ab+b2我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.观察这两个多项式:(1)每个多项式有几项?(3)中间项和第一项,第三项有什么关系?(2)每个多项式的第一项和第三项有什么特征?三项.这两项都是数或式的平方,并且符号相同.是第一项和第三项底数的积的±2倍.探究新知完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.222baba完全平方式:探究新知简记口诀:首平方,尾平方,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.2ab+b2±=(a±b)²a2首2+尾2±2×首×尾(首±尾)2两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.探究新知3.a²+4ab+4b²=()²+2·()·()+()²=()²2.m²–6m+9=()²–2·()·()+()²=()²1.x²+4x+4=()²+2·()·()+()²=()²x2x+2aa2ba+2b2b对照a²±2ab+b²=(a±b)²,填空:mm–33x2m3探究新知试一试下列各式是不是完全平方式?(1)a2–4a+4;(2)1+4a²;(3)4b2+4b–1;(4)a2+ab+b2;(5)x2+x+0.25.是只有两项;不是4b²与–1的符号不统一;不是不是是ab不是a与b的积的2倍.探究新知说一说例1分解因式:(1)16x2+24x+9;(2)–x2+4xy–4y2.分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+(3)2.(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.素养考点1利用完全平方公式分解因式探究新知解:(1)16x2+24x+9=(4x+3)2;=(4x)2+2·4x·3+(3)2(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.探究新知1.把下列多项式因式分解.(1)x2–12xy+36y2.(2)16a4+24a2b2+9b4.解:(1)x2–12xy+36y2=x2–2·x·6y+(6y)2=(x–6y)2.(2)16a4+24a2
本文标题:人教版八年级上册数学14.3.2-公式法
链接地址:https://www.777doc.com/doc-6672449 .html