您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 21.3--实际问题与一元二次方程
九年级上册21.3实际问题与一元二次方程22.3实际问题与一元二次方程1.根据问题中的数量关系列出一元二次方程并求解,体会方程是刻画现实世界某些问题的一个有效的数学模型。2.根据问题的实际意义,检验所得的结果是否合理,培养分析问题、解决问题的能力.学习目标:例1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?(2)每一轮的传染源和传染之后的患流感人数是多少?(1)本题中的数量关系是什么?分析:……被传染人被传染人……被传染人被传染人…………xx开始传染源1被传染人被传染人则第一轮的传染源有人,有人被传染,x设每轮传染中平均一个人传染了x个人,开始传染源被传染人被传染人……x第二轮的传染源有人,有人被传染.1xx+1x(x+1)例1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:(3)如何理解经过两轮传染后共有121人患了流感?传染源数、第一轮被传染数和第二轮被传染数的总和是121人.例1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:(4)如何利用已知数量关系列出方程,并解方程得出结论?解:设每轮传染中平均一个人传染了x个人.1+x+x(1+x)=121.___________,21xx答:平均一个人传染了10个人.10-12(不符题意,舍去)列一元二次方程解应用题的一般步骤:第一步:审题,明确已知和未知;第二步:找相等关系;第三步:设元,列方程,并解方程;第五步:作答.第四步:检验根的合理性;(5)如果按照这样的传染速度,三轮传染后有多少人患流感?121+121×10=1331人(6)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?x+1第三轮的传染源有人,有人被传染,共有人患流感?x+1+x(x+1)第二轮的传染源有人,有人被传染,共有人患流感?第一轮的传染源有人,有人被传染,共有人患流感?设每轮传染中平均一个人传染了x个人,1xx(x+1)x+1x+1+x(x+1)〔x+1+x(x+1)〕x+〔x+1+x(x+1)〕xx+1+x(x+1)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?主干支干支干……小分支小分支……小分支小分支…………xxx1解:设每个支干长出x个小分支,则1+x+x·x=91x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.2.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?3.参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?分析:容易求出,甲种药品成本的年平均下降额为:_________________________乙种药品成本的年平均下降额为:__________________________________显然,乙种药品成本的年平均下降额较大.但是年平均下降额(元)不等同于年平均下降率(百分数)探究2(5000-3000)÷2=1000(元)(6000-3600)÷2=1200(元)设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)2元,于是有5000(1-x)2=3000解方程,得:x1≈0.225,x2≈1.7756000(1-y)2=3600设乙种药品的下降率为y列方程解方程,得y1≈0.225,y2≈-1.775根据问题的实际意义,乙种药品成本的年平均下降率约为22.5%甲乙两种药品成本的平均下降率相同,都是22.5%乙种药品成本的年平均下降率是多少?请比较两种药品成本的年平均下降率.根据问题的实际意义,甲种药品成本的年平均下降率约为22.5%经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?得到的结论就是:甲乙两种药品的平均下降率相同成本下降额较大的药品,它的成本下降率不一定较大.不但要考虑它们的平均下降额,而且要考虑它们的平均下降率.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元。哪种药品成本的年平均下降率较大?(4)算一算乙种药品的年平均下降率是多少?若设乙种药品成本的年平均下降率为y,那么一年后乙种药品成本为______元,两年后乙种药成本为______元,于是有等量关系:____________。分析:6000(1-y)6000(1-y)26000(1-y)2=3600两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元。哪种药品成本的年平均下降率较大?分析:(5)比较两种药品的年平均下降率,你能得出什么结论?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格成本.下降额表示绝对变化量,成本下降率表示相对变化量,两者兼顾才能全面比较对象的变化状况。a(1±x)n=b复利公式a:增长前x:增长(降低)的百分率n:期数b:增长后青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.解:设水稻每公顷产量的年平均增长率为x,根据题意可列方程7200(1+x)2=8450.解得(1+x)2≈1.17.x1≈0.08x2≈-2.08(不符合实际舍去).答:水稻每公顷产量的年平均增长率约为8%.在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。XX30cm解:设长方形框的边宽为xcm,依题意,得30×20–(30–2x)(20–2x)=400整理得x2–25x+100=0得x1=20,x2=5当x=20时,20-2x=-20(舍去);当x=5时,20-2x=10答:这个长方形框的框边宽为5cm探究3分析:本题关键是如何用x的代数式表示这个长方形框的面积要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)27分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7解法一:设正中央的矩形两边分别为9xcm,7xcm依题意得21274379xx解得2331x),(2332舍去不合题意x故上下边衬的宽度为:左右边衬的宽度为:8.143275422339272927x4.143214222337212721x探究3要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?27分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm依题意得212743)1421)(1827(xx解方程得4336x(以下同学们自己完成)方程的哪个根合乎实际意义?为什么?在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。XX30cm解:设长方形框的边宽为xcm,依题意,得30×20–(30–2x)(20–2x)=400整理得x2–25x+100=0得x1=20,x2=5当x=20时,20-2x=-20(舍去);当x=5时,20-2x=10答:这个长方形框的框边宽为5cm探究1分析:本题关键是如何用x的代数式表示这个长方形框的面积要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)27分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7解法一:设正中央的矩形两边分别为9xcm,7xcm依题意得21274379xx解得2331x),(2332舍去不合题意x故上下边衬的宽度为:左右边衬的宽度为:8.143275422339272927x4.143214222337212721x探究2要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?27分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm依题意得212743)1421)(1827(xx解方程得4336x(以下同学们自己完成)方程的哪个根合乎实际意义?为什么?例1.(2004年,镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.解:(1)方案1:长为米,宽为7米;719方案2:长为16米,宽为4米;方案3:长=宽=8米;注:本题方案有无数种(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.x(16-x)=63+2,x2-16x+65=0,046514)16(422acb∴此方程无解.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米学校课外生物小组的实验园地是一块长40米,宽26米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为864平方米,求小道的宽?设小道的宽为x米。根据题意得:(40-2x)(26-x)=864088462xx0)44)(2(xx21x442x(不合题意,舍去)答:小道的宽为2米。小道小道26404026探究3例.(2003年,舟山)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为S米2,(1)求S与x的关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?【解析】(1)设宽AB为x米,则BC为(24-3x)米,这时面积S=x(24-3x)=-3x2+24x(2)由条件-3x2+24x=45化为:x2-8x+15=0解得x1=5,x2=3∵0<24-3x≤10得14/3≤x<8∴x2不合题意,AB=5,即花圃的宽AB为5米
本文标题:21.3--实际问题与一元二次方程
链接地址:https://www.777doc.com/doc-6692377 .html