您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 平行线的性质习题(含答案)
2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.B.C.D.【答案】A【解析】【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【详解】解:∵AC∥BE,∴∠A=∠ABE=70°,故选:A.【点睛】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.2.如图在中,已知,,,则()A.B.C.D.【答案】B【解析】【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【详解】∵∠1+∠EFD=180°,∠1+∠2=180°,∴∠EFD=∠2,∴AB∥EF∴∠ADE=∠3,∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C,∵∠AED=58°,∴∠C=58°,故选B.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.3.如图,已知直线c与a、b分别交于点A、B,且∠1=120°,当∠2=()时,直线a∥b.A.B.C.D.【答案】B【解析】【分析】先根据对顶角相等求出∠3的度数,再由平行线的判定即可得出结论.【详解】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,∴直线a∥b,故选B.【点睛】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.4.如图a∥b,∠1与∠2互余,∠3=115°,则∠4等于()A.115°B.155°C.135°D.125°【答案】B【解析】【分析】根据两直线平行同旁内角互补以及互余互补的定义可计算出∠4的值.【详解】如图,∵∠3与∠5是对顶角,∴∠5=∠3=115°,∵a∥b,∴∠2+∠4=180°,∠1+∠5=180°,∴∠1=180°-115°=65°,又∵∠1与∠2互余,∴∠2=90°-∠1=25°,∴∠4=180°-∠2=180°-25°=155°,故选B.【点睛】本题考查了平行线的性质以及余角和补角的知识,熟练掌握相关性质是解题的关键.5.如图,给出如下推理:①∠1=∠3.∴AD∥BC;②∠A+∠1+∠2=180°,∴AB∥CD;③∠A+∠3+∠4=180°,∴AB∥CD;④∠2=∠4,∴AD∥BC其中正确的推理有()A.①②B.③④C.①③D.②④【答案】D【解析】【分析】根据平行线的性质与判定解答即可.【详解】即内错角相等.故①错误;即同旁内角互补.故②正确;,故③错误;故④正确,即②④正确,故选D.【点睛】此题主要考察平行线的性质与判定,正确理解条件与结论之间的关系是解题的关键.6.如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°【答案】C【解析】【分析】过点E作EF∥CD,根据AB∥CD可得EF∥AB,利用两直线平行,同旁内角互补和内错角相等,分别求出∠BEF和∠FEC的度数,二者相加即可.【详解】过点E作EF∥CD,如图所示:∵AB∥CD,∴EF∥AB,∵∠ABE=120°,∴∠BEF=60°,∵EF∥CD,∠ECD=25°,∴∠FEC=∠ECD=25°,∴∠E=∠BEF+∠ECD=60°+25°=85°.故选:C.【点睛】考查了平行线性质,解答此题的关键是利用两直线平行,分别求出∠BEF和∠FEC的度数.7.如图,l1∥l2,∠1=50°,则∠2等于()A.135°B.130°C.50°D.40°【答案】B【解析】【分析】两直线平行,同旁内角互补,据此进行解答.【详解】∵l1∥l2,∠1=50°,∴∠2=180°-∠1=180°-50°=130°,故选B.【点睛】本题应用的知识点为:两直线平行,同旁内角互补.8.如图,将三角形ABC沿AB方向平移后,到达三角形BDE的位置.若∠CAB=50°,∠ABC=100°,则∠1的度数为()A.30°B.40°C.50°D.60°【答案】A【解析】【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠1的度数.【详解】∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠1的度数为:180°-50°-100°=30°.故选A.【点睛】此题主要考查了平移的性质,得出∠CAB=∠EBD=50°是解决问题的关键.二、填空题9.如果两边与的两边互相平行,且,,则的度数为__.【答案】35°或55°【解析】【分析】根据:∠1两边与∠2的两边互相平行得出∠1=∠2或∠1+∠2=180°,代入求出x,即可得出答案.【详解】∵∠1两边与∠2的两边互相平行,∴∠1=∠2或∠1+∠2=180°,∵∠1=(3x+20)°,∠2=(8x-5)°,∴3x+20=8x-5或3x+20+8x-5=180,解得:x=5,或x=15,当x=5时,∠1=35°,当x=15时,∠1=65°,故答案为:35°或65°.【点睛】本题考查了平行线的性质的应用,能知道“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补”是解此题的关键.10.如图,∠1=70°,a∥b,则∠2=_____________,【答案】110°【解析】【分析】如图,根据对顶角相等可得∠3=∠1=70°,再根据平行线的性质即可求得∠2的度数.【详解】如图,∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-70°=110°,故答案为:110°.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键.11.如图,,则的度数是_________.【答案】60【解析】【分析】如图,先利用邻补角求出∠4=70°,再根据得∠4+∠2+∠3=180°,即可求出∠2的度数.【详解】∵,∴∠4=180°-110°=70°,∵,∴∠4+∠2+∠3=180°,则∠2=60°.故填60.【点睛】此题主要考察平行线的性质.12.如图,工程队铺设一公路,他们从点A处铺设到点B处时,由于水塘挡路,他们决定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD的度数是________.【答案】80°.【解析】【分析】过C作MN∥AB,根据平行线的判定可得DE∥NM∥AB,再根据平行线的性质可得∠1和∠2的度数,进而可得∠BCD的度数.【详解】解:过C作MN∥AB,∵AB∥DE,∴MN∥DE,∴∠2+∠D=180°,∵∠CDE=140°,∴∠2=40°,∵MN∥AB,∴∠1+∠B=180°,∵∠ABC=120°,∴∠1=60°,∴∠BCD=180°-60°-40°=80°,故答案为:80°.【点睛】此题主要考查了平行线的判定和性质,关键是掌握两直线平行,同旁内角互补.13.如图,直线l1、l2分别与直线l3、l4相交,∠1与∠3互余,∠3余角与∠2互补,∠4=125°,则∠3=______.【答案】55°.【解析】【分析】求出∠5的度数,根据∠1与∠3互余和∠3的余角与∠2互补求出∠1+∠2=180°,根据平行线的判定得出l1∥l2,根据平行线的性质求出即可.【详解】解:∵∠4=125°,∴∠5=180°-125°=55°,∵∠1与∠3互余,∠3的余角与∠2互补,∴∠1+∠2=180°,∴l1∥l2,∴∠3=∠5=55°,故答案是:55°.【点睛】本题考查了平行线的性质和判定的应用,能求出l1∥l2是解此题的关键,注意:两直线平行,内错角相等.14.点D、E、F分别在AB、AC、BC上(1)_______∴(2)________∴(3)∴_______________(4)∴_______________【答案】(1);(2);(3);(4);.【解析】【分析】在解答此类问题时一定要对平行线的性质和判定定理有一个明确的认识和把握,在此基础上结合题设的相关要求和已知条件,就可以解答出正确的结论.【详解】(1)∴(2)∠3,∴(3)∴ACDF(4)∴DEBC【点睛】本题考查的是平行线的性质和判定的相关知识,解题关键是熟记平行线的性质和判定定理.15.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉它,∠A=,且AB∥CD.小明马上运用已学的数学知识得出了∠C的度数,聪明的你一定知道∠C=_______.【答案】1400【解析】【分析】根据“两直线平行,同旁内角互补”即可解答.【详解】解:∠C=40°理由:∵AB∥CD.∴∠A+∠C=180°(两直线平行,同旁内角互补)∴∠C=180°-∠A=180°-40°=140°故答案为:140°.【点睛】本题考查平行线的性质.16.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图所示),第一次转弯时的∠B=,那么∠C应是_______.【答案】140°【解析】【分析】根据两直线平行,内错角相等即可解答.【详解】解:∵AB∥CD,∴∠B=∠C=140°.【点睛】本题考查两直线平行,内错角相等.三、解答题17.如图,已知,分别探讨下面的四个图形中、和的关系,并请你从所得的四个关系中任选一个,说明成立的理由.(1)图①的关系是_____________;(2)图②的关系是_____________;(3)图③的关系是_____________;(4)图④的关系是_____________;【答案】(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PCD=∠APC+∠PAB;(4)∠PAB=∠APC+∠PCD.【解析】【分析】(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行同旁内角互补即可解答;(2)过点P作l∥AB,则AB∥CD∥l,再根据两直线内错角相等即可解答;(3)根据AB∥CD,可得出∠PEB=∠PCD,再根据三角形外角的性质进行解答;(4)根据AB∥CD,可得出∠PAB=∠PFD,再根据∠PFD是△CPF的外角,由三角形外角的性质进行解答;【详解】(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°;(2)过点P作直线l∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠PAB=∠3,∠PCD=∠4,∴∠APC=∠PAB+∠PCD;(3)∵AB∥CD,∴∠PEB=∠PCD,∵∠PEB是△APE的外角,∴∠PEB=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB;(4)∵AB∥CD,∴∠PAB=∠PFD,∵∠PFD是△CPF的外角,∴∠PCD+∠APC=∠PFD,∴∠PAB=∠APC+∠PCD.【点睛】本题考查的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.18.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD-∠CBD的度数.【答案】(1)∠GFD=120°;(2)∠GFD-∠CBD=90°.【解析】【分析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.【详解】解:(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠B
本文标题:平行线的性质习题(含答案)
链接地址:https://www.777doc.com/doc-6698564 .html