您好,欢迎访问三七文档
ABCDEF1.对应角_______,对应边——————的两个三角形,叫做相似三角形相等成比例2.相似三角形的———————,各对应边——————。对应角相等成比例如果△ABC∽△DEF,那么∠A=∠D,∠B=∠E,∠C=∠FEFBCDFACDEAB1、两个全等三角形一定相似吗?为什么?2、两个直角三角形一定相似吗?为什么?两个等腰直角三角形呢?3、两个等腰三角形一定相似吗?为什么?两个等边三角形呢?相似比是多少?300450A′B′C′1061251°82°它们是相似三角形吗?为什么?A6BC5382°47°6如果△ABC∽△ADE,那么你能找出哪些角的关系?∠A=∠A,∠B=∠ADE,∠C=∠AED.边呢?ADEBCADABAEACDEBC==DE∥BC如图,DE//BC,且D是边AB的中点,DE交AC于E,△ADE与△ABC有什么关系?说明理由.相似ABCDE证明:在△ADE与△ABC中∠A=∠A21BCDEACAEABAD∵DE//BC∴∠ADE=∠B,∠AED=∠C过E作EF//AB交BC于F可证DBFE是平行四边形21ACAEABADF△ADE≌△EFC∴DE=BF,DE=FC21BCDE∴△ADE∽△ABC结论:三角形的中位线截得的三角形与原三角形相似2.如图,DE//BC,△ADE与△ABC有什么关系?说明理由.相似ABCDE证明:在△ADE与△ABC中∠A=∠ABCDEACAEABAD∵DE//BC∴∠ADE=∠B,∠AED=∠C过E作EF//AB交BC于F∵DBFE是平行四边形ACAEABADF∴DE=BFBCBFACAE则BCDEACAE定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似∴△ADE∽△ABC平行于三角形一边的直线与其它两边(或延长线)相交,所得的三角形与原三角形________.相似“A”型“X”型(图2)DEOBCABCDE(图1)请写出它们的对应边的比例式已知:如图,AB∥EF∥CD,CDABEFO3图中共有____对相似三角形。△EOF∽△CODAB∥EF△AOB∽△FOEAB∥CDEF∥CD△AOB∽△DOC如图,△ABC中,DE∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来.解:与△ABC相似的三角形有3个:△ADE△GFC△GOEABCDEFGO如图,已知DE∥BC,AE=50cm,EC=30cm,BC=70cm,∠BAC=450,∠ACB=400.(1)求∠AED和∠ADE的大小;(2)求DE的长.(2)).(75.4330507050,.70305050,cmDEDEBCDEACAE所以即ADBEC解:(1)DE∥BC△ADE∽△ABC∠AED=∠C=400.△ADE∽△ABC在△ADE中,∠ADE=1800-400-450=950.如图,在△ABC中,DG∥EH∥FI∥BC,(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_____。ABCDEFGHI△ADG∽△AEH∽△AFI∽△ABC1:4相似三角形的定义相似比的性质相似三角形判定的预备定理1.对应角_______,对应边——————的两个三角形,叫做相似三角形.相等成比例2.相似三角形的———————,各对应边——————。对应角相等成比例3.如何识别两三角形是否相似?∵DE∥BC∴△ADE∽△ABC平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。DEOBCABCDE思考:有没有其他简单的办法判断两个三角形相似?ACC'A'BCC'B'ABB'A'是否有△ABC∽△A’B’C’?ABCC’B’A’三边对应成比例已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC.求证:△ABC∽△A`B`C`证明:在△ABC的边AB(或延长线)上截取AD=A`B`,A`B`C`ABCDE过点D作DE∥BC交AC于点E.又A`B`:AB=B`C`:BC=C`A`:CA∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC∵AD=A`B`∴AD:AB=A`B`:AB∴DE:BC=B`C`:BC,EA:CA=C`A`:CA.因此DE=B`C`,EA=C`A`.∴△A`B`C`∽△ABC∴△ADE≌△A`B`C`例1:在△ABC和△A′B′C′中,已知:(1)AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm.试判定△ABC与A′B′C′是否相似,并说明理由.(2)AB=12cm,BC=15cm,AC=24cmA’B’=16cm,B’C’=20cm,A’C’=30cm,如图已知AEACDEBCADAB试说明∠BAD=∠CAE.ADCEBAEACDEBCADAB解∴ΔABC∽ΔADE∴∠BAC=∠DAE∴∠BAC━∠DAC=∠DAE━∠DAC即∠BAD=∠CAE答案是2:1不相似,请说明理由。,求出相似比;如果它们相似吗?如果相似,和如图在正方形网格上有222111ACBACB①4:2=5:x=6:y②4:x=5:2=6:y③4:x=5:y=6:2要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?这个问题有其他答案吗?4562平行于三角形一边的直线与其他两边(或延长线)相交,所构成的三角形与原三角形相似;三边对应成比例的,两三角形相似.相似三角形的判定方法判断两个三角形相似,你有哪些方法方法1:通过定义(不常用)三个角对应相等三边对应成比例方法2:通过平行线。方法3:三边对应成比例。DCBA如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE∽△ABC相似呢?ADAB?此时,如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形一定相似吗?A=AEAEAC=?3131已知:如图△ABC和△A`B`C`中,∠A=∠A`,∠A`,A`B`:AB=A`C`:AC.求证:△ABC∽△A`B`C`A`B`C`ABCED证明:在△ABC的边AB、AC(或它们的延长线)上分别截取AD=A`B`,AE=A`C`,连结DE.∠A=∠A`,这样,△ADE≌△A`B`C`.∵A`B`:AB=A`C`:AC∴AD:AB=AE:AC∴DE∥BC∴△ADE∽△ABC∴△A`B`C`∽△ABC相似三角形的识别∴△ABC∽△'''ABC如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。''''ABACABAC(两边对应成比例且夹角相等,两三角形相似)A=A'ABCA′B′C′想一想:如果对应相等的角不是两条对应边的夹角,那么两个三角形是否相似呢?ABCDEF(2)∠A=45°,AB=12cm,AC=15cm∠A’=45°,A’B’=16cm,A’C’=20cm(1)∠A=120°,AB=7cm,AC=14cm,∠A`=120°,A`B`=3cm,A`C`=6cm;∵==1.5FEAE36542、判断图中△AEB和△FEC是否相似?解:∴△AEB∽△FEC∵∠1=∠2==1.5BECE4530∴=FEAEBECE54303645EAFCB123.在正方形ABCD中,E为AD上的中点,F是AB的四分一等分点,连结EF、EC;△AEF与△DCE是否相似?说明理由.ABCDFE4、已知:如图,BD、CE是△ABC的高,试说明△ADE∽△ABC。ABCDE平行于三角形一边的直线与其他两边(或延长线)相交,所构成的三角形与原三角形相似;三边对应成比例,两三角形相似.相似三角形的判定方法两边对应成比例且夹角相等,两三角形相似.这两个三角形的三个内角的大小有什么关系?三个内角对应相等的两个三角形一定相似吗?三个内角对应相等。观察你与老师的直角三角尺,会相似吗?(30O与60O)相似画△,使三个角分别为60°,45°,75°。①同桌分别量出两个三角形三边的长度;②同桌这两个三角形相似吗?即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______.相似一定需三个角吗?如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似.相似三角形的识别方法:思考如果两个三角形仅有一对角是对应相等的,那么它们是否一定相似?观察CAA'BB'C'∵∠A=∠A',∠B=∠B'∴ΔABC∽ΔA'B'C'用数学符号表示:相似三角形的识别(两个角分别对应相等的两个三角形相似)例1如图所示,在两个直角三角形△ABC和△A′B′C′中,∠B=∠B′=90°,∠A=∠A′,判断这两个三角形是否相似.C'B'A'CBA例题欣赏解:∵∠B=∠B′=90°(已知),∠A=∠A′(已知),∴△ABC∽△A′B′C′(两个角分别对应相等的两个三角形相似.)例2.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.AEFBCD例题分析解:∵DE∥BC,EF∥AB(已知),∴∠ADE=∠B=∠EFC(两直线平行,同位角相等)∠AED=∠C.(两直线平行,同位角相等)∴△ADE∽△EFC.(两个角分别对应相等的两个三角形相似.)例3.弦AB和CD相交于⊙o内一点P,求证:PA·PB=PC·PDABCDPO证明:连接AC、BD∵∠A、∠D都是CB所对的圆周角⌒∴∠A=∠D同理:∠C=∠B∴△PAC∽△PDBPBPCPDPA即PA·PB=PC·PDABCDE例4.已知D、E分别是△ABC的边AB,AC上的点,若∠A=35°,∠C=85°,∠AED=60°则AD·AB=AE·AC找一找FABCDGE图1(1)图1中DE∥FG∥BC,找出图中所有的相似三角形。(2)图2中AB∥CD∥EF,找出图中所有的相似三角形。答:相似三角形有△ADE∽△AFG∽△ABC。答:相似三角形有△AOB∽△FOE∽△DOC。AB图2CFDEO(3)在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么?∠B=180°-(∠A+∠C)=180°-(80°+60°)=40°CADB3.找出图中所有的相似三角形△ACD∽△CBD∽△ABC你能写出对应边的比例式吗?ABDC图3填一填(1)如图3,点D在AB上,当∠=∠时,△ACD∽△ABC。(2)如图4,已知点E在AC上,若点D在AB上,则满足条件,就可以使△ADE与原△ABC相似。●ABCE图4∠ACD∠B(或者∠ACB=∠ADB)DE//BCD(或者∠C=∠ADE)(或者∠B=∠ADE)D如图,在Rt△ABC的一边AB上有一点P(点P与点A,B不重合),过点P作直线截得的三角形与△ABC相似,想一想满足条件的直线共有多少条?试画出图形并简要说明理由.思考:若三角形为任意三角形,点P为三角形任意一边上的点,则这样的直线有几条?我们来试一试…EABDC解:∵∠A=∠A∠ABD=∠C∴△ABD∽△ACB∴AB:AC=AD:AB∴AB2=AD·AC∵AD=2AC=8∴AB=43.已知如图,∠ABD=∠CAD=2AC=8,求ABABCDDBCA184√212√25、如图:在Rt△ABC中,∠ABC=900,BD⊥AC于D若AB=6AD=2则AC=BD=BC=5、如图:在Rt△ABC中,∠ABC=900,BD⊥AC于DABDCEF问:若E是BC中点,ED的延长线交BA的延长线于F,求证:AB:AC=DF:BF泰勒斯测量金字塔高度的示意图:AA′BCB′C′CBAC′B′A′如果人体高度AC=1.7米,人影长BC=2.2米,而B′C′=176米,你能求出金字塔的高度并说明其中的道理吗?可证△ABC∽△A’B’C’即所以A’C’=1.7x176÷2.2=136mC'B'BCC'A'AC
本文标题:相似三角形的判定全
链接地址:https://www.777doc.com/doc-6703828 .html