您好,欢迎访问三七文档
1指数型数列--类等比放缩法原理:由1nnaqa可以得到:2211221....nnnnnaaqaqaqaq从而可以构造类等比的通项公式进行放缩。从而有以下三种放缩度的控制211231111........nnaaaaaaqaqaq(从2a开始放)21231222........nnaaaaaaaqaq(从3a开始放)241231234444.......nnaaaaaaaaaqaqaq(从4a开始放)1、设12nnan,证明:12311113....2naaaa2、(技巧积累:浓度不等式)设141nna,1231....2naaaa3、12nna,131nnab。证明:123....3nbbbb24、求证:74123112311311n5、(类等比数列放缩法技巧积累:如何进行化简整理出类公比)已知数列的首项为12a,前n项和为nS,且对任意的*nN,当n≥2时,an总是3Sn-4与2-52Sn的等差中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设(1)nnbna,nT是数列{}nb的前项和,*nN求nT;(Ⅲ)设13423nnnnnaca,nP是数列{}nc的前项和,,*nN,试证明:32nP.36.(技巧积累:类等比放缩,浓度不等式)设数列{}na的前n项和为nS,满足1*1221()nnnSanN,且123,5,aaa成等差数列。(1)求1a的值;(2)求数列{}na的通项公式。(3)证明:对一切正整数n,有1211132naaa7.(2012广东)设数列{}na的前n项和为nS,满足1*1221()nnnSanN,且123,5,aaa成等差数列。(1)求1a的值;(2)求数列{}na的通项公式。(3)证明:对一切正整数n,有1211132naaa4答案4、求证:74123112311311n解析:121123123128111231714112311231131nnn7484488447211413128115、(类等比数列放缩法技巧积累:如何进行化简整理出类公比)已知数列的首项为12a,前n项和为nS,且对任意的*nN,当n≥2时,an总是3Sn-4与2-52Sn的等差中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设(1)nnbna,nT是数列{}nb的前项和,*nN求nT;(Ⅲ)设13423nnnnnaca,nP是数列{}nc的前项和,,*nN,试证明:32nP.解:(Ⅰ)当n≥2时,2an=3Sn-4+2-52Sn,即2(Sn-Sn-1)=3Sn-4+2-52Sn,所以Sn=12Sn-1+2∴an+1an=Sn+1-SnSn-Sn-1=(12Sn+2)-(12Sn-1+2)Sn-Sn-1=12(n≥2)又2+a2=12×2+2=3a2=1a2a1=12∴数列{an}是首项为2,公比为12的等比数列∴an=22-n(n∈N*)(Ⅱ)由(Ⅰ)知an=22-n(n∈N*)则Tn=b1+b2+……+bn=2×2+3×1+4×12+……+(n+1)×22-n∴12Tn=2×1+3×12+……+n×23-n+(n+1)×22-n,作差得:12Tn=2×2+1+12+14+……+23-n-(n+1)22-n5=6-n+32n-1∴Tn=12-n+32n-2(n∈N*)(Ⅲ)证明:113399942343343244324nnnnnnnnnnnnnaca122311(1)91111931344()(1).124444224214nnnnnPccc6.(技巧积累:类等比放缩,浓度不等式)设数列{}na的前n项和为nS,满足1*1221()nnnSanN,且123,5,aaa成等差数列。(1)求1a的值;(2)求数列{}na的通项公式。(3)证明:对一切正整数n,有1211132naaa【解析】(1)12112221,221nnnnnnSaSa相减得:12132nnnaa12213212323,34613Saaaaaa123,5,aaa成等差数列13212(5)1aaaa(2)121,5aa得132nnnaa对*nN均成立1113223(2)nnnnnnnaaaa得:122112123(2)3(2)3(2)32nnnnnnnnnnaaaaa(3)当1n时,11312a当2n时,23311()()23222222nnnnnnnaa231211111111311222222nnnaaa由上式得:对一切正整数n,有1211132naaa(lfxlby)7.(2012广东)设数列{}na的前n项和为nS,满足1*1221()nnnSanN,且123,5,aaa成等差数列。(1)求1a的值;(2)求数列{}na的通项公式。6(3)证明:对一切正整数n,有1211132naaa【解析】(1)12112221,221nnnnnnSaSa相减得:12132nnnaa12213212323,34613Saaaaaa123,5,aaa成等差数列13212(5)1aaaa(2)121,5aa得132nnnaa对*nN均成立1113223(2)nnnnnnnaaaa得:122112123(2)3(2)3(2)32nnnnnnnnnnaaaaa(3)当1n时,11312a当2n时,23311()()23222222nnnnnnnaa231211111111311222222nnnaaa由上式得:对一切正整数n,有1211132naaa
本文标题:类等比放缩专练
链接地址:https://www.777doc.com/doc-6724544 .html