您好,欢迎访问三七文档
第1页共22页1.三角形的三线:(1)在三角形中,连接一个顶点与它对边中点的________,叫做这个三角形的中线,三角形的三条中线_____________交于一点,这点称为三角形的__________.(2)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的______叫做三角形的角平分线,三角形的三条角平分线________________交于一点,这点称为三角形的_________.(3)从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的________叫做三角形的高线(简称三角形的高),三角形的三条高________________交于一点,这点称为三角形的________;锐角三角形的三条高线及垂心都在其________,直角三角形的垂心是________,钝角三角形的垂心和两条高线在其________.一.选择题(共9小题)1.如图,在△ABC中,BC边上的高是、在△BCE中,BE边上的高、在△ACD中,AC边上的高分别是()A.AF、CD、CEB.AF、CE、CDC.AC、CE、CDD.AF、CD、CE2.下列说法中正确的是()A.三角形三条高所在的直线交于一点B.有且只有一条直线与已知直线平行C.垂直于同一条直线的两条直线互相垂直D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离第2页共22页3.△ABC中BC边上的高作法正确的是()A.B.C.D.4.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形5.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对6.已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A.2cmB.3cmC.4cmD.6cm7.下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角8.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④9.(2015春•无锡校级月考)下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④第3页共22页二.填空题(共2小题)10.如图,在△ABC中,BE是边AC上的中线,已知AB=4cm,AC=3cm,BE=5cm,则△ABC的周长是cm.11.如图,在△ABC中,BD平分∠ABC,BE是AC边上的中线,如果AC=10cm,则AE=cm,如果∠ABD=30°,则∠ABC=.三.解答题(共10小题)12.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.第4页共22页13.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,BE=2,AF=3,填空:(1)BE==.(2)∠BAD==.(3)∠AFB==.(4)S△AEC=.14.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?第5页共22页15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,(1)若∠B=47°,∠C=73°,求∠DAE的度数.(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,△ABC的周长为9,AD为中线,△ABD的周长为8,△ACD的周长为7,求AD的长.第6页共22页17.已知:如图,△ABC中,AD、AE分别是△ABC的高和角平分线,BF是∠ABC的平分线,BF与AE交于O,若∠ABC=40°,∠C=60°,求∠DAE、∠BOE的度数.18.如图(1),AD是△ABC的高,如图(2),AE是△ABC的角平分线,如图(3),AF是△ABC的中线,完成下列填空:(1)如图(1),∠=∠=90°;S△ABC=;(2)如图(2),∠BAE=∠=∠;(3)如图(3),BF==;S△ABF=.第7页共22页19.如图,完成下面几何语言的表达.①∵AD是△ABC的高(已知);∴AD⊥BC,∠==°.②∵AE是△ABC的中线(已知),∴==,=2=2;③∵AF是△ABC的角平分线(已知),∴∠=∠=∠,∠=2∠=2∠.20.在△ABC中,D为BC的中点,E为AC上任一点,BE交AD于O,某学生在研究这一问题时,发现了如下事实:(1)当==时,有=;(2)当==时,有=;(3)当==时,有=;①当=时,按照上述的结论,请你猜想用n表示AO/AD的一般性结论(n为正整数);②若=,且AD=18,求AO.第8页共22页点评:本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积的比等于底的比,熟练掌握这个结论是解题的关键.已知△ABC的面积是60,请完成下列问题:(1)如图1,若AD是△ABC的BC边上的中线,则△ABD的面积△ACD的面积(填“>”“<”或“=”)(2)如图2,若CD、BE分别是△ABC的AB、AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y由题意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程组为:,解得,通过解这个方程组可得四边形ADOE的面积为.(3)如图3,AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积,并说明理由.第9页共22页答案一.选择题(共9小题)1.(2015•楚雄州校级模拟)如图,在△ABC中,BC边上的高是、在△BCE中,BE边上的高、在△ACD中,AC边上的高分别是()A.AF、CD、CEB.AF、CE、CDC.AC、CE、CDD.AF、CD、CE考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.解答:解:在△ABC中,BC边上的高是AF;在△BCE中,BE边上的高CE;在△ACD中,AC边上的高分别是CD;故选B点评:本题考查了三角形的角平分线、中线、高线,是基础题,熟记三角形高的定义是解题的关键.2.(2015春•东平县校级期末)下列说法中正确的是()A.三角形三条高所在的直线交于一点B.有且只有一条直线与已知直线平行C.垂直于同一条直线的两条直线互相垂直D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离考点:三角形的角平分线、中线和高.菁优网版权所有分析:A正确,即三角形的垂心;B应有无数条因此错误;C在平面几何中垂直于同一条直线的两条直线互相平行所以错误;D中语言错误线段不能叫距离.解答:解:B中应为:有无数条直线与已知直线平行,故B错;C中应为:在平面几何中垂直于同一条直线的两条直线互相平行,故C错,D中应写成垂线段长度;A正确.故选A.点评:本题考查了三角形的垂心知识和一些几何基础知识,做题时注意严格对比概念.3.(2015春•邢台期末)△ABC中BC边上的高作法正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.解答:解:为△ABC中BC边上的高的是D选项.第10页共22页故选D.点评:本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.4.(2015春•昌乐县期末)如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.解答:解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.点评:此题主要考查了三角形的高线性质,了解不同形状的三角形的位置:锐角三角形的三条高都在三角形的内部;直角三角形的三条高中,有两条是它的直角边,另一条在内部;钝角三角形的三条高有两条在外部,一条在内部.5.(2015春•沙河市期末)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的角平分线、中线、高线的定义解答即可.解答:解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选C.点评:本题考查了三角形的角平分线、中线和高,是基础题,熟记概念是解题的关键.6.(2015春•莘县期末)已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A.2cmB.3cmC.4cmD.6cm考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形中线的定义可得BD=CD,然后根据三角形的周长公式列式计算即可得解.解答:解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.故选B.点评:本题考查了三角形的角平分线、中线和高线,熟记概念并求出两三角形周长的差等于AB﹣AC是解题的关键.第11页共22页7.(2015春•崇安区期中)下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角考点:三角形的角平分线、中线和高;三角形内角和定理;三角形的外角性质.菁优网版权所有分析:根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.解答:解:A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.点评:本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.8.(2015春•深圳校级期中)三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④考点:三角形的角平分线、中线和高.菁优网版权所有分析:根据三角形的中线、角平分线、高的定义对四个说法分析判断后利用排除法求解.解答:解:①三角形的中线、角平分线、高都是线段,说法正
本文标题:三角形三线专题
链接地址:https://www.777doc.com/doc-6739739 .html