您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 湘教版2019年九年级上册第一、二单元测试卷
一、选择题(共10小题,每小题3分,满分30分)1.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)2.已知函数y=的图象过点(1,﹣2),则该函数的图象必在()A.第二、三象限B.第二、四象限C.第一、三象限D.第三、四象限3.已知三角形的面积一定,则底边a与其上的高h之间的函数关系的图象大致是()A.B.C.D.4.方程(m2﹣1)x2+mx﹣5=0是关于x的一元二次方程,则m的值不能是()A.0B.C.±1D.6.用配方法解方程x2﹣6x+4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣3)2=5D.(x+3)2=57.若关于x的方程2x2﹣ax+a﹣2=0有两个相等的实根,则a的值是()A.﹣4B.4C.4或﹣4D.28.如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2B.x<﹣1或x>2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>29.绿苑小区在规划设计时,准备在两栋楼之间,设置一块面积为900m2的矩形绿地,且长比宽多10m,设绿地的宽为xm,根据题意,可列方程为()A.x(x﹣10)=900B.x(x+10)=900C.10(x+10)=900D.2[x+(x﹣10)]=90010.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9B.2≤k≤34C.1≤k≤16D.4≤k<16二、填空题11.已知y与(2x+1)成反比例,且当x=1时,y=3,那么当x=0时,y=.12.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为.(无需确定x的取值范围)13.如图,反比例函数y=的图象上有两点A(2,4)、B(4,b),则△AOB的面积为.14.一元二次方程2x2﹣1=6x的一般形式是,其中一次项系数是.15.若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是.16.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.17.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三、解答题(共66分)19.解方程:(1)(x﹣2)(x﹣3)=12(2)3y2+1=2y.20.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.求:(1)反比例函数与一次函数的解析式;(2)根据图象写出反比例函数的值>一次函数的值的x的取值范围.21.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?22.若关于x的方程x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.23.如图,在平面直角坐标系xOy中,反比例函数的图象与一次函数y=kx﹣k的图象的一个交点为A(﹣1,n).(1)求这个一次函数的解析式;(2)若P是x轴上一点,且满足∠APO=45°,直接写出点P的坐标.24.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?25.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)求△DOC的面积.(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.2016-2017学年湖南省邵阳市邵阳县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=中xy=3对各选项进行逐一判断即可.【解答】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(﹣3)×1=﹣3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵3×=1≠3,∴此点不在反比例函数的图象上,故C错误;D、∵×3=1≠3,∴此点不在反比例函数的图象上,故D错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.2.已知函数y=的图象过点(1,﹣2),则该函数的图象必在()A.第二、三象限B.第二、四象限C.第一、三象限D.第三、四象限【考点】反比例函数的性质.【分析】先将点(1,﹣2)代入函数解析式y=,求出k的取值,从而确定函数的图象所在象限.【解答】解:∵函数y=的图象过点(1,﹣2),∴﹣2=,k=﹣2,∴函数解析式为y=﹣,∴函数的图象在第二、四象限.故选:B.【点评】本题考查了反比例函数的图象与性质:k>0时,图象在第一、三象限;k<0时,图象在第二、四象限;以及待定系数法求函数解析式.3.已知三角形的面积一定,则底边a与其上的高h之间的函数关系的图象大致是()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【解答】解:已知三角形的面积s一定,则它底边a上的高h与底边a之间的函数关系为S=ah,即a=;是反比例函数,且2s>0,h>0,a>0;故其图象只在第一象限.故选D.【点评】本题考查反比例函数的图象特点:反比例函数y=的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.4.方程(m2﹣1)x2+mx﹣5=0是关于x的一元二次方程,则m的值不能是()A.0B.C.±1D.【考点】一元二次方程的定义.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式m2﹣1≠0,再解不等式即可.【解答】解:∵(m2﹣1)x2+mx﹣5=0是关于x的一元二次方程,∴m2﹣1≠0,解得:m≠±1,故选:C.【点评】此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.5.已知,则的值为()A.B.C.2D.【考点】分式的基本性质.【专题】计算题.【分析】设=k,则a=2k,b=3k,c=4k.将其代入分式进行计算.【解答】解:设=k,则a=2k,b=3k,c=4k.所以==,故选B.【点评】已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.6.用配方法解方程x2﹣6x+4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣3)2=5D.(x+3)2=5【考点】解一元二次方程-配方法.【分析】先把常数项移到方程右边,再方程两边同时加上9,然后利用完全平方公式把方程左边写成完全平方式即可.【解答】解:x2﹣6x=﹣4,x2﹣6x+32=5,(x﹣3)2=5.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.解决本题的关键是方程两边同时加上一次项系数一半的平方.7.若关于x的方程2x2﹣ax+a﹣2=0有两个相等的实根,则a的值是()A.﹣4B.4C.4或﹣4D.2【考点】根的判别式.【分析】根据△的意义由题意得△=0,即(﹣a)2﹣4×2×(a﹣2)=0,整理得a2﹣8a+16=0,然后解关于a的一元二次方程即可.【解答】解:∵关于x的方程2x2﹣ax+a﹣2=0有两个相等的实根,∴△=0,即(﹣a)2﹣4×2×(a﹣2)=0,整理得a2﹣8a+16=0,∴a1=a2=4.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2B.x<﹣1或x>2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】根据反比例函数的自变量取值范围,y1与y2图象的交点横坐标,可确定y1>y2时,x的取值范围.【解答】解:∵函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),∴当y1>y2时,那么直线在双曲线的上方,∴此时x的取值范围为﹣1<x<0或x>2.故选D.【点评】本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.9.绿苑小区在规划设计是,准备在两栋楼之间,设置一块面积为900m2的矩形绿地,且长比宽多100m,设绿地的宽为xm,根据题意,可列方程为()A.x(x﹣10)=900B.x(x+10)=900C.10(x+10)=900D.2[x+(x﹣10)]=900【考点】由实际问题抽象出一元二次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,x(x+10)=900故选B.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.10.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9B.2≤k≤34C.1≤k≤16D.4≤k<16【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】先根据题意求出A点的坐标,再根据AB=BC=3,AB、BC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、C两点时k的取值范围即可.【解答】解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(4,4)时,k=16,因而1≤k≤16.故选:C.【点评】本题主要考查了反比例函数,用待定系数法求一次函数的解析式,解此题的关键是理解题意进而求出k的值.二、填空题11.已知y与(2x+1)成反比例,且当x=1时,y=3,那么当x=0时,y=9.【考点】待定系数法求反比例函数解析式.【专题】计算题.【分析】根据反比例函数的定义,设y=,再把已知的一组对应值代入求出k得到y与x的函数关系式,然后计算自变量为0时的函数值即可.【解答】解:设y=,把x=1,y=3代入得=3,所以y=,当x=0时,y==9.故答案为9.【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.12.近视眼镜的度数y(度)与镜片焦距x(
本文标题:湘教版2019年九年级上册第一、二单元测试卷
链接地址:https://www.777doc.com/doc-6744248 .html