您好,欢迎访问三七文档
v1.0可编辑可修改11平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣”表示,a的平方根合起来记作“”,其中“”读作“二次根号”,“”读作“二次根号下a”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。要特别注意:a≠±a。3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。4.平方根与算术平方根的区别与联系:区别:1定义不同2个数不同:3表示方法不同:v1.0可编辑可修改22联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,a叫做被开立方数(2)开立方:求一个数a的立方根的运算叫做开平方。(3)立方根的性质:A正数有一个正立方根B负数有一个负立方根C零的立方根是零(4)立方根的表示:数a的立方根我们用符号来表示,读作三次根号a,其中a叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b0)。6.开方运算:我们知道,当a≥0时,│a│=a;当a0时,│a│=a.综上所述,有a(a≥0)2a=│a│=-a(a0)(1)两个重要的公式为任何数)为任何数)aaaaa(()3(33333av1.0可编辑可修改337.实数1、概念:有理数和无理数统称为实数。2、分类按定义正有理_正整数___________有理数0__正分数_____________有限小数或_无限循环_小数__负整数_实数__负有理__负分数_无理数_正无理___________负无理无限不循环小数_________正实数按大小0v1.0可编辑可修改44负实数.常见的无理数类型(1)一般的无限不循环小数,如:1.¨···(2)看似循环而实际不循环的小数,如···(相邻两个1之间0的个数逐次加1)。(3)有特定意义的数,如:π=3.···(4).开方开不尽的数。如:35,3。③0的平方根和算术平方根都是0。3、实数的有关性质⑴a与b互为相反数〈=〉a+b=0⑵a与b互为倒数〈=〉ab=1⑶任何实数的绝对值都是非负数,即a≥0⑷互为相反数的两个数的绝对值相等,即a=a⑸正数的倒数是正数;负数的倒数是负数;零没有倒数.实数和数轴上的点的对应关系:实数和数轴上的点是一一对应的关系实数的大小比较1.在数轴上表示的两个数,右边的数总比左边的数大。2.正数大于零,零大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小。实数中的非负数及其性质4、在实数范围内,正数和零统称为非负数,我们已经学过的非负数有如下三种形式⑴任何一个实数a的绝对值是非负数,即a≥0⑵任何一个实数的平方是非负数,即2a≥0;⑶任何一个非负数a的算术平方根是非负数,即a≥05、非负数有以下性质⑴非负数有最小值零⑵有限个非负数之和仍然是非负数⑶几个非负数之和等于0,则每个非负数都等于0。v1.0可编辑可修改55二、典型例题一、填空题:1、213的倒数是的负的平方根;25的算术平方根是;立方根等于3的数是;327的平方根是;81的四次方根是;若一个数的五次方为-32,则这个数为.2、若42m与13m是同一个数的平方根,则m.3、设x为正整数,若1x是完全平方数,则它前面的一个完全平方数是.4、4的算术平方根的立方根的相反数是.5、已知ba,为实数,421025baa,求a=;b=.6、若323babaA为ba3的算术平方根,22223babaB为322ba的算术平方根,则A+B的平方根为.7、若34yx,8)34(3yx,则nyx2)((n为正整数)的值为.8、若92yx与3yx互为相反数,则x,y.9、把xx51)5(的根号外面的因式移到根号内得.11、已知23,23cbba,则)(2222cabcabcba的值为.12、设23,17,10cba,则cba,,的大小关系是.13、已知9899,100101NM,则M与N的大小关系是.14、若a为自然数,b为整数,且满足347)3(2ba,则a,b.
本文标题:数的开方知识点
链接地址:https://www.777doc.com/doc-6757469 .html