您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 《角的平分线的性质》说课
角的平分线的性质(第1课时)人教版八年级数学11.3说课内容教材分析教学内容教学目标学情分析教法与学法教学过程的设计一、教材分析本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用。内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力。作角的平分线是几何作图中的基本作图。角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据。因此,本节内容在数学知识体系中起到了承上启下的作用。二、教学内容1、基本知识:了解尺规作图的原理及角的平分线的性质.2、基本技能(1)会用尺规作图作角的平分线。(2)会利用全等三角形证明角平分线的性质。(3)能运用角的平分线性质定理解决简单的几何问题3、数学思想方法:从特殊到一般4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验三、教学目标目标分析:通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。三、教学目标刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。四、学情分析四、学情分析1.重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。2.难点:角平分线的性质的探究。重难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。四、学情分析本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”。鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合。五、教法与学法教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变。这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握。五、教法与学法六、教学过程的设计活动1.创设情景[教学内容1]生活中有很多数学问题:小明家居住在一栋居民楼的一楼,刚好位于一条自来水管和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与自来水管道和天然气管道相连.问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看看..P自来水天然气六、教学过程的设计活动2.探索体验[教学内容2]要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.BA····EDC六、教学过程的设计[教学内容3]把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?BA····DC六、教学过程的设计[教学内容3]角平分线的画法:(2)分别以M,N为圆心.大于MN一半的长为半径作弧.两弧在∠AOB的内部交于C.(3)作射线OC,则射线OC即为所求ABOMNC(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.六、教学过程的设计[教学内容3]想一想:为什么OC是角平分线呢?已知:OM=ON,MC=NC.求证:OC平分∠AOB.证明:连接CM,CN在△OMC和△ONC中,OM=ON,MC=NC,OC=OC,∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC即:OC平分∠AOBABMNCO六、教学过程的设计[教学内容4]让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.问题1:第一次的折痕和角有什么关系?为什么?问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?六、教学过程的设计[教学内容5]如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)六、教学过程的设计[教学内容5]猜想:角平分线上的点到角的两边的距离相等题设:一个点在一个角的平分线上结论:它到角的两边的距离相等已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E.求证:PD=PE.六、教学过程的设计[教学内容6]判断正误,并说明理由:(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.AOBPEFAOBPEF图2图3AOBPE图1(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.活动3.合作交流六、教学过程的设计[教学内容7]让学生运用本节课所学的知识回答课前引例中的问题:问题:引例中两条管道的长度有什么关系?理由是什么?.P自来水天然气六、教学过程的设计[教学内容8]例题讲解例1如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.AFCDBE六、教学过程的设计变题1:如图,△ABC中,AD是∠BAC的平分线,∠C=90°,DE⊥AB于E,F在AC上,且BD=DF,求证:CF=EB.变题2:如图,△ABC中,AD是∠BAC的平分线,∠C=90°,DE⊥AB于E,BC=8,BD=5,求DE.AFCDBEACDBE例2已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.证明:过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F∵BM是△ABC的角平分线,点P在BM上∴PD=PE(在角平分线上的点到角的两边的距离相等)同理PE=PF.∴PD=PE=PF.即点P到边AB、BC、CA的距离相等DEFABCPMN六、教学过程的设计六、教学过程的设计[教学内容9]1、这节课你有哪些收获,还有什么困惑?2、通过本节课你了解了哪些思考问题的方法?活动4.评价反思六、教学过程的设计[教学内容10]作业必做题:教材第22页第1、2、3题选做题:教材第23页第6题活动5.布置作业(一)板书设计§13.3角的平分线的性质角平分线的作法例题讲解复习引入角平分线的性质课堂小结情景猜想(二)安排创设情景约4分钟,探究体验约13分钟,合作交流约18分钟,评价反思约6分钟,机动时间约4分钟。(二)安排创设情景约4分钟,探究体验约13分钟,合作交流约18分钟,评价反思约6分钟,机动时间约4分钟。(三)教学设计安排本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够很好地得到落实。四、教学过程设计2)布置作业作业(必做题)(1)用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,为什么?(2)△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.(3)如图,CD⊥AB,BE⊥AC,垂足分别为DE,BE,CD相交于点O,OB=OC.求证:∠1=∠2AFCDBEBack四、教学过程设计2).布置作业作业(选做题)(4)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,连接EF.EF与AD交于G.AD与EF垂直吗?证明你的结论.AFCDBEGBack
本文标题:《角的平分线的性质》说课
链接地址:https://www.777doc.com/doc-6758139 .html