您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版-九年级上册--第24章-《圆》检测题(包含答案)
人教版九年级上册第24章《圆》检测题(包含答案)1/23《圆》检测题一.选择题1.如图,AB是⊙O的直径,BC是⊙O的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°2.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10B.8C.5D.34.如图示,⊙O内切于△ABC,切点分别为点D,点E,点F已知AB=BC,∠B=40°,连结DE,EF,则∠DEF的度数为()A.40°B.55°C.65°D.70°人教版九年级上册第24章《圆》检测题(包含答案)2/235.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A.cmB.3cmC.cmD.2cm6.已知圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图的圆心角是()A.216°B.270°C.288°D.300°7.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点.若∠BOC=50°,则∠D的度数()A.105°B.115°C.125°D.85°8.如图,△ABC中,∠C=90°,AC与圆O相切于点D,AB经过圆心O,且与圆交于点E,连接BD,若AC=3CD=3,则BD的长为()A.3B.2C.D.29.已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=()A.100°B.40°C.80°D.70°人教版九年级上册第24章《圆》检测题(包含答案)3/2310.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3D.211.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20D.9°12.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.二.填空题13.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.14.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).人教版九年级上册第24章《圆》检测题(包含答案)4/2315.如图,点A,B,C,D都在⊙O上,C是的中点,AB=CD.若∠ODC=50°,则∠ABC的度数为°.16.如图,⊙O的直径AB垂直于弦CD,垂足是E,OE=CE,则∠CAD=°.17.如图,在⊙O中,直径AB⊥GH于点M,N为直径上一点,且OM=ON,过N作弦CD,EF.则弦AB,CD,EF,GH中最短的是.18.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是.19.如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.人教版九年级上册第24章《圆》检测题(包含答案)5/23三.解答题20.已知:如图,∠ACB=90°,∠CAD=∠CDA,∠CBD=∠CDB,求∠ADB.21.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.22.如图,AC是⊙O的直径,点B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE(1)求证:BE是⊙O的切线;(2)若BE=3,求图中阴影部分的面积.人教版九年级上册第24章《圆》检测题(包含答案)6/2323.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.24.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.人教版九年级上册第24章《圆》检测题(包含答案)7/2325.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=,求⊙O的半径.26.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.人教版九年级上册第24章《圆》检测题(包含答案)8/23参考答案一.选择题1.解:∵BC是⊙O的切线,∴∠OBC=90°,∵OC=AB,OA=OB,∴OB=OC,∴∠C=30°.故选:B.2.解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°﹣50°=40°.故选:B.3.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.人教版九年级上册第24章《圆》检测题(包含答案)9/234.解:∵BA=BC,∴∠A=∠C,∴∠A=(180°﹣∠B)=(180°﹣40°)=70°,连接OD、OF,∵O内切于△ABC,切点分别为点D,点E,∴OD⊥AB,OF⊥AC,∴∠ADO=∠AFO=90°,∴∠DOF=180°﹣∠A=180°﹣70°=110°,∴∠DEF=DOF=55°.故选:B.5.解:∵PA为⊙O的切线,A为切点,∴∠PAO=90°,在直角△APO中,OA==2,∵AB⊥OP,∴AD=BD,∠ADO=90°,∴∠ADO=∠PAO=90°,∵∠AOP=∠DOA,∴△APO∽△DAO,∴=,即=,解得:AD=3(cm),人教版九年级上册第24章《圆》检测题(包含答案)10/23∴BD=3cm.故选:B.6.解:设该圆锥侧面展开图的圆心角为n°,圆锥的底面圆的半径==3,根据题意得2π×3=,解得n=216.即该圆锥侧面展开图的圆心角为216°.故选:A.7.解:连接BD,如图,∵AB是半圆的直径,∴∠ADB=90°,∵∠BDC=∠BOC=×50°=25°,∴∠ADC=90°+25°=115°.故选:B.8.解:连接OD,如图,∵AC与圆O相切于点D,∴OD⊥AC,∴∠ODA=90°,∵∠C=90°,∴OD∥BC,∵==3,∴AO=2OB,∴AO=2OD,∴sinA==,∴∠A=30°,人教版九年级上册第24章《圆》检测题(包含答案)11/23在Rt△ABC中,BC=AC=×3=3,在Rt△BCD中,BD===2.故选:B.9.解:在优弧AB上取一点E,连接AE,BE,AO1,BO1.∵∠AEB=∠AO2B,∠AO2B=80°,∴∠AEB=40°,∵∠AEB+∠AO1B=180°,∴∠AO1B=180°﹣∠AEB=140°,∴∠ACB=∠AO1B=70°,故选:D.10.解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.人教版九年级上册第24章《圆》检测题(包含答案)12/2311.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.12.解:∵∠ACB=90°,∠CAB=30°,BC=3,∴AB=2BC=6,∴AC===3,∵O、H分别为AB、AC的中点,∴OB=AB=3,CH=AC=,在Rt△BCH中,BH==,∵旋转角度为120°,∴阴影部分的面积=﹣=π.故选:A.二.填空题(共7小题)13.解:如图,作OC⊥AB于C,则AC=BC,∵AB=8cm,∴AC=,在Rt△OAC中,∵OC=3cm,AC=4cm,∴==5cm.人教版九年级上册第24章《圆》检测题(包含答案)13/23故答案为:5cm.14.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).15.解:∵C是的中点,AB=CD.∴==,∵∠ODC=50°,∴∠A=∠ACB=∠COD=×(180°﹣2∠ODC)=×(180°﹣50°×2)=40°,人教版九年级上册第24章《圆》检测题(包含答案)14/23∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣40°×2=100°.故答案为:100.16.解:∵⊙O的直径AB垂直于弦CD,∴∠CEO=90°,=,∵OE=CE,∴∠COB=45°,∴∠CAD=45°,故答案为:45.17.解:如图连接OG,OE,过点O作OH⊥EF于H,显然,ON>OH∵OM=ON,∴OM>OH,EH=,∴EF=2EH=2,GM=,∴GH=2GM=2,∵OG=OE,OM>OH,∴GH<EF,同理,GH<CD,∵AB为直径,∴CD<AB,∴弦AB,CD,EF,GH中最短的是GH,故答案为GH.人教版九年级上册第24章《圆》检测题(包含答案)15/2318.解:作EF⊥CD于F,由旋转变换的性质可知,EF=BC=1,CD=CB+BD=4,由勾股定理得,CA===,则图中阴影部分的面积=△ABC的面积+扇形ABD的面积+△ECD的面积﹣扇形ACE的面积=×1×3++﹣=﹣,故答案为:﹣.19.解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.人教版九年级上册第24章《圆》检测题(包含答案)16/23三.解答题(共7小题)20.解:∵∠CAD=∠CDA,∠CBD=∠CDB,∴CA=CB,CB=CD,∴CA=CB=CD,∴△ABD的外接圆的圆心是点C,∴∠ADB=∠ACB=45°.21.(1)证明:如图1,连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,人教版九年级上册第24章《圆》检测题(包含答案)17/23∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:如图2,连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴=2,∴,∵∠DFC=∠AEB=90°,∴DF∥BE,∴△DFC∽△BEC,∴,∵CF=6,∴DF=3,∵AB是直径,∴AD⊥BC,∵DF⊥AC,∴∠DFC=∠ADC
本文标题:人教版-九年级上册--第24章-《圆》检测题(包含答案)
链接地址:https://www.777doc.com/doc-6759018 .html