您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2020-2021厦门市八年级数学下期末试题(带答案)
2020-2021厦门市八年级数学下期末试题(带答案)一、选择题1.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1)B.(-1,)C.(,1)D.(-,-1)2.如图,矩形OABC的顶点O与平面直角坐标系的原点重合,点A,C分别在x轴,y轴上,点B的坐标为(-5,4),点D为边BC上一点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为()A.(-5,3)B.(-5,4)C.(-5,52)D.(-5,2)3.已知函数y=11xx,则自变量x的取值范围是()A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠14.若代数式11xx有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠15.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形6.将一张长方形纸片按如图所示的方式折叠,,BCBD为折痕,则CBD的度数为()A.60B.75C.90D.957.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.48.已知,,abc是ABC的三边,且满足222()()0ababc,则ABC是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形9.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)10.一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是()A.B.C.D.11.将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h17cmB.h8cmC.7cmh16cmD.15cmh16cm12.如图,函数y=ax+b和y=kx的图像交于点P,关于x,y的方程组0yaxbkxy的解是()A.23xyB.32xyC.32xyD.32xy二、填空题13.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.14.在函数41xyx中,自变量x的取值范围是______.15.一次函数的图象过点1,3且与直线21yx平行,那么该函数解析式为__________.16.若2(3)x=3-x,则x的取值范围是__________.17.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.18.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.19.已知实数a、b在数轴上的位置如图所示,则化简222()abba的结果为________20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.三、解答题21.计算:(.22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.23.在创建文明城区的活动中,有两端长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度(米)与施工时间(时)之间的关系的部分图像.请解答下列问题.(1)甲队在的时段内的速度是米/时.乙队在的时段内的速度是米/时.6小时甲队铺设彩色道砖的长度是米,乙队铺设彩色道砖的长度是米.(2)如果铺设的彩色道砖的总长度为150米,开挖6小时后,甲队、乙队均增加人手,提高了工作效率,此后乙队平均每小时比甲队多铺5米,结果乙反而比甲队提前1小时完成总铺设任务.求提高工作效率后甲队、乙队每小时铺设的长度分别为多少米?24.已知:2y与x成正比例,且2x时,8y.(1)求y与x之间的函数关系式;(2)当3y时,求x的取值范围.25.如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)利用函数图象写出关于x、y的二元一次方程组22yxykxb的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.2.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.B解析:B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1010xx,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.6.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC+ABC+EBD+EBD=180°,再通过等量代换可以求出CBD.【详解】解:∵长方形纸片按如图所示的方式折叠,,BCBD为折痕∴ABCABC,EBDEBD∵ABC+ABC+EBD+EBD=180°(平角定义)∴ABC+ABC+EBD+EBD=180°(等量代换)ABC+EBD=90°即CBD=90°故选:C.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB=22ACBC=22108=6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.9.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.10.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222158ABBC=17,则在杯外的最小长度是24-17=7cm,所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.12.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32xy.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BADDAE.ABADAE150.BAEABE△是等腰三角形15.AEB故答案为15.14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有
本文标题:2020-2021厦门市八年级数学下期末试题(带答案)
链接地址:https://www.777doc.com/doc-6772063 .html