您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 三角形的高、中线、角平分线教案
第1页,共6页三角形的高中线角平分线荆门市象山中学樊玲教学目标(1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点.(2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心.教学重点能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.教学难点在钝角三角形中作高.教学过程本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.第2页,共6页教学环节教学过程设计意图一、创设情境引入新课为了迎接“阳光体育与奥运同行”活动,同学们利用课外活动时间积极参加体育锻炼,小希和皮皮进行了跳远训练.那么如何测量他们的跳远成绩呢?过三角形的一个顶点,你能画出它的对边的垂线吗?(引出三角形高)数学来源于生活.通过学生身边的跳远,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学.第3页,共6页二、合作交流探究新知活动1(一)探究三角形的高1.三角形高的定义:(你能描述三角形的高吗?)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,在△ABC中,AD⊥BC,点D是垂足,AD是△ABC的一条高.2.做一做:(每一个同学准备一个锐角三角形的纸片)你能画出这个三角形的三条高吗?你能用折纸的方法得到它们吗?从这三条高中你发现了什么?(这三条高之间有怎样的位置关系)((可以反过来画好高后,找哪条边上高))3.议一议:(使折痕过顶点,,顶点的对边边缘重合)如果用直角三角形和钝角三角形纸片,你能通过折或画的方法找到它的高吗?它们的高有几条?它们又有什么样的位置关系?4.练一练:(1)AD为ABC的高,则ADB==(2)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形(3)在下图中,正确画出△ABC中BC边上高的是().借助学生对问题的解决,唤醒学生对三角形的高的认识与确认,有助于新知的解决,并且发展学生的观察力与语言表述能力.通过折或画出三角形的高,提高学生的基本作图能力,发展其空间观念.小组合作交流,并通过观察、猜想经历知识的发展形成过程,体验了“发现”知识的快乐,变被动接受为主动探究.设计练习,使学生对三角形高的的有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性.教学环节教学过程设计意图第4页,共6页二、合作交流探究新知活动2(二)探究三角形的中线问题1:你能将ABC分为面积相等的两个三角形吗?(引出三角形中线)1.三角形中线的定义:三角形的中线:在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.)如图,D是BC的中点,则线段AD是△ABC的中线,此时有BD=DC=21BC.2.做一做:你能画出三角形的所有中线吗?观察你们所作的图形,你又有哪些发现?与同伴交流.(分组合作交流)3.练一练:如图,AD、BE为△ABC的中线交于点G,连结CG,并延长交AB于点F.(1)则AC=AE=EC,CD=,AF=AB.(2)若S△ABC=12cm2,则S△ABD=.通过解决面积问题,由三角形高自然引入三角形的中线,培养学生动脑、动手能力,语言表达能力.让学生继续动手、实验,亲历知识的发生、发展过程,并且在这个过程中学会与人合作.重点考察:①学生对三角形中线定义的理解及运用;②学生对图形的观察能力及数形结合的能力活动3(三)探究三角形的角平分线问题:准备一个三角形纸片ABC,按图所示的方法折叠,展开后,折痕BD把∠ABC分成∠1和∠2两部分.观察∠1和∠2有什么关系?(由学生动手操作,观察思考,引出三角形的角平分线)1.三角形角平分线定义:三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.如图,BD是∠BAC的角平分线,那么有∠ABD=∠DBC=21∠ABC2.做一做:(分组合作,交流讨论)(准备三个三角形)(1)你能分别画出或折出这三个三角形的角平分线吗?(2)在每个三角形中,这三条角平分线之间有怎样的位置关系?3.练一练:如图,AD、BE、CF是△ABC的三条角平分线,则∠1=,∠3=21,∠ACB=2从学生熟悉的折纸入手,为三角形的角平分线的学习作铺垫。提高学生对不同知识点的识别能力,感受数学语言的准确性。通过折出或用量角器、直尺画出角平分线,提高学生的作图能力,并从中体验了“发现”知识的快乐,变被动接受为主动探究。教学环节教学过程设计意图第5页,共6页B'CBA三.拓展创新挑战自我1.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC是()A.边BB′上的中线B.边BB′上的高C.∠BAB′的角平分线D.以上答案都正确2.一个残缺的三角形残片如图2所示,,请你作出AB边上的高所在的直线.你是怎样作的?为什么?如果不恢复这个缺角呢?前面基础练习之后,通过生活实例的解决,让学生感受数学和生活的联系及数学在生活中的重要性,充分体现数学来源于生活又还原于生活.让学生多角度、全方位发挥其思维的深度和广度.四.课堂小结感悟反思学生自主小结,交流在本课学习中的体会、收获,交流学习过程中体验与感受,以及可能存在的困惑,师生合作共同完成课堂小结.(辅以几何画板动画来演示,加深学生对这三种重要线段的理解)在此活动中,教师应重点关注:(1)不同学生总结知识的程度和能力;(2)对练习中反馈的信息及时处理.五.走出课堂应用数学1.课本P23练习2、32.数学趣味题:要载7棵树,请你来帮忙,每行栽3棵,恰好成6行.同学们,你能想出几种栽法吗?发挥教材的扩张作用,培养学生的发散思维能力和对数学的兴趣.六.板书设计三角形的角平分线、中线和高三角形的高线三角形的中线三角形的角平分线基本图形:性质:三角形的三条高所在的直线交于一点.三角形的三条中线交于一点.三角形的三条角平分线交于一点.要点出一点:三高(所在直线)、三中线、三角平分线分别交于一点!图1第6页,共6页本节课的教法特点以及预期效果分析1.情境创设法:利用同学们身边的跳远成绩的测量,引出三角形的特殊线段,使数学能密切联系实际体现知识的形成和应用过程.以实际问题为出发点和归宿,更能贴近学生生活,体现由具体到抽象再到具体的过程,以激发学生对学习本节内容的求知欲,培养他们运用所学知识解决问题的能力.2.加强新旧知识的联系:三角形的高、中线、角平分线与已学过的垂线、线段的中点,角的平分线有关,讲解时将新旧知识融合贯通,既利于学生掌握新知,又可帮他们形成一定的知识体系,进一步丰富了学生对图形的认识和感受.3.加强学生学习的主动性与探究性:课堂上通过同学们在折纸、画图等实践活动中充分调动学生自主学习的潜能,丰富学生对此内容的体验和理解,同时发展他们的空间观念,从而发展他们的创新能力,让他们感受到成功的喜悦.当学生在探究过程中遇到困难时,我层层设问,启发诱导,设计适当的铺垫,让学生在经过自己的努力来克服困难的过程中体验如何探究,而不是替代他们思考,并鼓励探究多种不同问题,使探究过程活跃起来,以更好地激发学生的积极思维,得到更大的收获.4、运用多媒体等作为教辅工具:运用折纸以及用几何画板展示三角形三条重要线段的位置变化,增强学生的直观感受,扫除学生从形象思维难以跨越到抽象思维的障碍,突出重点,突破难点.
本文标题:三角形的高、中线、角平分线教案
链接地址:https://www.777doc.com/doc-6811217 .html