您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 2014新北师大版2.2二次函数的图像与性质(第1课时)
2.2二次函数的图像与性质(1)第二章二次函数北师大版数学九年级下册学习目标1、经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数的性质的体验。2、会用描点法作出二次函数y=x2和y=-x2的图象;能根据图象理解它们的性质,并根据图像比较两个函数的异同。3、能用类比法探索出函数y=ax2的性质。创设情境,提出问题创设情境,提出问题1.我们已经学过哪些函数?研究函数问题的一般程序是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?创设情境,提出问题1.我们已经学过哪些函数?研究函数问题的一般程序是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?数形结合,直观感受在二次函数y=x2中,y随x的变化而变化的规律是什么?观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:你会用描点法画二次函数y=x2的图象吗?xy=x2x…-3-2-10123…y=x2xy=x2…9410149…课堂助学列表xy0-4-3-2-11234108642-2描点,连线y=x2?图(1)图(2)图(3)图(4)图(5)图(6)下一页y=x2xy0-4-3-2-11234108642-21观察图象,回答问题串(1)你能描述图象的形状吗?与同伴进行交流.合作探究(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.(3)图象与x轴有交点吗?如果有,交点坐标是什么?(4)当x0时,随着x的值增大,y的值如何变化?当x0呢?(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?2xy这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.2xy当x0(在对称轴的左侧)时,y随着x的增大而减小.当x0(在对称轴的右侧)时,y随着x的增大而增大.抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,当x=0时,函数y的值最小,最小值是0.在学中做—在做中学(1)二次函数y=-x2的图象是什么形状?(2)先想一想,然后作出它的图象.(3)它与二次函数y=x2的图象有什么关系?xy0-4-3-2-11234-10-8-6-4-22-1观察图象,回答问题串(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当x0时,随着x的值增大,y的值如何变化?当x0呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.y=-x22xy这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.二次函数y=-x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.y2xy当x0(在对称轴的左侧)时,y随着x的增大而增大.当x0(在对称轴的右侧)时,y随着x的增大而减小.y抛物线y=-x2在x轴的下方(除顶点外),顶点是它的最高点,开口向下,当x=0时,函数y的值最大,最大值是0.2xy2xy抛物线顶点坐标对称轴位置开口方向增减性最值y=x2y=-x2(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:它们的性质有哪些异同?函数y=ax2(a≠0)的图象和性质在同一坐标系中作二次函数y=2x2的图象.(1)完成下表:(2)作出y=2x2的图象.xy=x2y=2x2x…-3-2-10123…y=x2y=2x2x…9410149…x………188202818…二次项系数a0,开口都向上;对称轴都是y轴;增减性与也相同.顶点都是原点(0,0).二次函数y=2x2的图象形状与y=x2一样,仍是抛物线.(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?只是开口大小不同.想一想,在同一坐标系中作二次函数y=-x2和y=-2x2的图象,会是什么样?二次项系数a0,开口都向下;对称轴都是y轴;增减性与也相同.顶点都是原点(0,0).二次函数y=-2x2的图象形状与y=-x2一样,仍是抛物线.(4)二次函数y=-2x2的图象是什么形状?它与二次函数y=-x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?22xy只是开口大小不同.2xy请你总结二次函数y=ax2的图象和性质.1.抛物线y=ax2的顶点是原点,对称轴是y轴.3.当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质2.当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下.4.|a|越大,开口越小,|a|越小,开口越大.二次函数y=ax2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值开口大小抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2(a0)y=ax2(a0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:|a|越小,开口越大.|a|越大,开口越小.aa(0,0)知道就做别客气当堂检测1.填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外).(0,0)y轴对称轴的右对称轴的左00上2.若二次函数是开口向上的抛物线,则k的值是()A.-3B.2C.3D.-3或24kk2x1ky)(B3.已知是二次函数y=x2图象上的一点,则图象上与之对称的点的坐标是()A.B.C.D.4121,41,2141,2141,2121,214.已知a﹤-1,A(a-1,y1),B(a,y2)C(a+1,y3)为二次函数y=x2的图象上的三点,则y1,y2,y3的大小关系是()A.B.B.D.321yyy123yyy213yyy312yyyBB
本文标题:2014新北师大版2.2二次函数的图像与性质(第1课时)
链接地址:https://www.777doc.com/doc-6840989 .html