您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 由递推关系求数列通项公式的几种方法
求数列通项公式的几种方法dnaan)1(:1等差数列的通项公式11:nnqaa等比数列的通项公式1、等差、等比数列的通项公式.,23.1nnnnaSna求项和的前已知数列.),(321.2*,nnnnnaNnaSSa求且的前项和为数列)()2()1(:1,1或相除递推相减公式nSSnSannn2.,23.1nnnnaSna求项和的前已知数列)2(32)1(12321323233333)23(232123:1111111111111nnaanSSanSannnnnnnnnnnnnn得中令时当解.),(321.2*,nnnnnaNnaSSa求且的前项和为数列)()2()1(:1,1或相除递推相减公式nSSnSannn2).()52(5352,}{520032353232)2()1()2(321)1(321,253321:*1111111111111NnaqaaqaaaaaaaaaaaSaSnaaSnnnnnnnnnnnnnnnnn是等比数列得时当解.),(321.2*,nnnnnaNnaSSa求且的前项和为数列)()2()1(:1,1或相除递推相减公式nSSnSannn2).()52(5352,}{520032353232)2()1()2(321)1(321,253321:*1111111111111NnaqaaqaaaaaaaaaaaSaSnaaSnnnnnnnnnnnnnnnnn是等比数列得时当解.,*21,.111的通项公式求数列)(,中已知数列nnnnaNnaaaa.的通项公式求数列na.,*21,1,.211nnnnnaNnaaaaa求)(中已知数列nnnnaaaaa求:,中,已知数列,121.311nnnnanaaaa:,,21,.411求中已知数列nnnnannaaaa:,11,.511求,中已知数列.,*12,2,.611nnnnaNnaaaa求)(中已知数列cbaann1.3形如nnnnaaaaa求:,中,已知数列,1311131)()(分析:设xaxann构造法2132121121323111)(得)代入(比较得与已知nnnnnnaaxxaaxaa2132113:11)(解nnnnaaaa321210211nnnaaa,}21a{n是等比数列N*)(n213a3)21(a21ann1n1n)0,1(1cbcbaann形如1)()(分析:设xabxann构造法111bbcabcann,}1{是等比数列b-canN*)(n1-bcb)1-bc(b)1-bc(1-bc1n11n1aaaann待定系数法11)1()1(111)(得)代入(比较得与已知bcabbcacxbcbaaxbbaannnnnn1bcx3nnnnanaaaa求:,中,已知数列,2111112aa解:223aa334aa)2(n+)1(3211naan21nn2121)n(na2n)(形如nfaann1迭加法N*)(n21nn2121)n(na2n11naann)1(时也适合当n41222121n1n21nann得中令nnnnannaaaa求:,中,已知数列,11111212aa解:2323aa3434aa)2(11nnnaann×1213423121nnnnaan)1n(n时也适合当nannanfa)(形如1.迭乘法N*)(nnna5.,*12211的通项公式求数列)(,中,已知数列nnnnaNnaaaa,,,,解;4534231224321aaaa)(猜测:*1Nnnnan然后用数学归纳法证明归纳法6?,.3?.2?.1新发现我有什么新想法我还有哪些疑问这节课我学到了什么小结:作业:1.复习2.进行等差数列,等比数列的知识梳理3.做卷子.其中例1(3)(8)选做为常数)形如ddaann(.11.,*211)2(11的通项公式求数列)(,中,已知数列nnnnnaNnaaaaa等差型.,*21)1(11的通项公式求数列)(,中,已知数列nnnnaNnaaaa2)12(nan121nan为常数)形如qaqann(.21)2(323512/441naaPnn同学们做到课课练)2(52011naaannn等比型52,53,}{1qaan公比首项是等比数列1)52(53nna)课课练的通项公式求数列)(,中,已知数列14/44.(,*122111PaNnaaaaannnnn得到由)2(.71nssannn的表达式。求且的前项和为数列nnnnnaNnaSSa),(321*,课课练P44/12,P50/19,P51/21课课练P48/111)52(53:nna答
本文标题:由递推关系求数列通项公式的几种方法
链接地址:https://www.777doc.com/doc-6872511 .html