您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 初升高数学衔接知识点
11.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.aaaaaa绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:ba表示在数轴上,数a和数b之间的距离.1.填空:(1)若5x,则x=_________;若4x,则x=_________.(2)如果5ba,且1a,则b=________;若21c,则c=________.2.选择题:下列叙述正确的是()(A)若ab,则ab(B)若ab,则ab(C)若ab,则ab(D)若ab,则ab3.化简:|x-5|-|2x-13|(x>5).2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()ababab;(2)完全平方公式222()2abaabb.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()abaabbab;(2)立方差公式2233()()abaabbab;(3)两数和立方公式33223()33abaababb;(4)两数差立方公式33223()33abaababb.练习1.填空:(1)221111()9423abba();(2)(4m22)164(mm);(3)2222(2)4(abcabc).2.选择题:(1)若212xmxk是一个完全平方式,则k等于()(A)2m(B)214m(C)213m(D)2116m(2)不论a,b为何实数,22248abab的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数23.分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1分解因式:(1)x2-3x+2;(2)x2+4x-12;(3)22()xabxyaby;(4)1xyxy.2.提取公因式法与分组分解法例2分解因式:(1)32933xxx;(2)222456xxyyxy.练习1.选择题:多项式22215xxyy的一个因式为()(A)25xy(B)3xy(C)3xy(D)5xy2.分解因式:(1)x2+6x+8;(2)8a3-b3;(3)x2-2x-1;(4)4(1)(2)xyyyx.3.分解因式:(1)31a;(2)424139xx;(3)22222bcabacbc;(4)2235294xxyyxy.4.根的判别式我们知道,对于一元二次方程ax2+bx+c=0(a≠0),用配方法可以将其变形为2224()24bbacxaa.①因为a≠0,所以,4a2>0.于是(1)当b2-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2=242bbaca;(2)当b2-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根3x1=x2=-2ba;(3)当b2-4ac<0时,方程①的右端是一个负数,而方程①的左边2()2bxa一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx+c=0(a≠0)的根的情况可以由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax2+bx+c=0(a≠0),有(1)当Δ>0时,方程有两个不相等的实数根x1,2=242bbaca;(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2ba;(3)当Δ<0时,方程没有实数根.x1=x2=1;5.根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根2142bbacxa,2242bbacxa,则有2212442222bbacbbacbbxxaaaa;2222122244(4)42244bbacbbacbbacaccxxaaaaa.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=ba,x1·x2=ca.这一关系也被称为韦达定理.例1已知方程2560xkx的一个根是2,求它的另一个根及k的值.例2已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.例3若x1和x2分别是一元二次方程2x2+5x-3=0的两根.(1)求|x1-x2|的值;(2)求221211xx的值;(3)x13+x23.6.二次函数y=ax2+bx+c的图像和性质4(1)当a>0时,函数y=ax2+bx+c图象开口向上;顶点坐标为24(,)24bacbaa,对称轴为直线x=-2ba;当x<2ba时,y随着x的增大而减小;当x>2ba时,y随着x的增大而增大;当x=2ba时,函数取最小值y=244acba.(2)当a<0时,函数y=ax2+bx+c图象开口向下;顶点坐标为24(,)24bacbaa,对称轴为直线x=-2ba;当x<2ba时,y随着x的增大而增大;当x>2ba时,y随着x的增大而减小;当x=2ba时,函数取最大值y=244acba.例1求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.
本文标题:初升高数学衔接知识点
链接地址:https://www.777doc.com/doc-6874312 .html