您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 全等三角形(知识点讲解)
全等三角形一、目标认知学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。重点:1.使学生理解证明的基本过程,掌握用综合法证明的格式;2.三角形全等的性质和条件。难点:1.掌握用综合法证明的格式;2.选用合适的条件证明两个三角形全等二、知识要点梳理知识点一:全等形要点诠释:能够完全重合的两个图形叫全等形。知识点二:全等三角形要点诠释:能够完全重合的两个三角形叫全等三角形知识点三:对应顶点,对应边,对应角要点诠释:两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角。知识点四:全等三角形的性质要点诠释:全等三角形对应边相等,对应角相等知识点五:三角形全等的判定定理(一)要点诠释:三边对应相等的两个三角形全等。简写成“边边边”或“SSS”知识点六:三角形全等的判定定理(二)要点诠释:两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”知识点七:三角形全等的判定定理(三)要点诠释:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”知识点八:三角形全等的判定定理(四)要点诠释:两个角和其中一个角的对边对应相等的两个三角形全等。简写成“角角边”或“AAS”知识点九:直角三角形全等的判定定理要点诠释:斜边和一条直角边对应相等的两个直角三角形全等。简写成“斜边、直角边”或“HL”三、规律方法指导1.探索三角形全等的条件:(1)一般三角形全等的判别方法有四种方法:①边角边(SAS);②角边角(ASA);③角角边(AAS);④边边边(SSS).(2)直角三角形的全等的条件:除了使用SAS、ASA、AAS、SSS判别方法外,还有一种重要的判别方法,也就是斜边、直角边(HL)判别方法.2.判别两个三角形全等指导(1)已知两边(2)已知一边一角(3)已知两角3.经验与提示:⑴寻找全等三角形对应边、对应角的规律:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边.④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)⑵找全等三角形的方法①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;②可以从已知条件出发,看已知条件可以确定哪两个三角形相等;③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;④若上述方法均不行,可考虑添加辅助线,构造全等三角形。⑶证明线段相等的方法:①中点定义;②等式的性质;③全等三角形的对应边相等;④借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。⑷证明角相等的方法:①对顶角相等;②同角(或等角)的余角(或补角)相等;③两直线平行,同位角、内错角相等;④等式的性质;⑤垂直的定义;⑥全等三角形的对应角相等;三角形的外角等于与它不相邻的两内角和。随着知识的深化,今后还有其它的方法。⑸证垂直的常用方法①证明两直线的夹角等于90°;②证明邻补角相等;③若三角形的两锐角互余,则第三个角是直角;④垂直于两条平行线中的一条直线,也必须垂直另一条。⑤证明此角所在的三角形与已知直角三角形全等;⑥邻补角的平分线互相垂直。⑹全等三角形中几个重要结论①全等三角形对应角的平分线相等;②全等三角形对应边上的中线相等;③全等三角形对应边上的高相等。4.知识的应用(1)全等三角形的性质的应用:根据三角形全等找对应边,对应角,进而计算线段的长度或角的度数.(2)全等三角形判别方法的应用:根据判别方法说明两个三角形全等,进一步根据性质说明线段相等或角相等.(3)用全等三角形测量距离的步骤:①先明确要解决什么实际问题;②选用全等三角形的判别方法构造全等三角形;③说明理由.5.注意点(1)书写全等三角形时一般把对应顶点的字母放在对应的位置.(2)三角形全等的判别方法中不存在“ASS”、“AAA”的形式,判别三角形全等的条件中至少有一条边.(3)寻找三角形全等的条件时,要结合图形,挖掘图中的隐含条件:如公共边、公共角、对顶角、中点、角平分线、高线等所带来的相等关系.(4)运用三角形全等测距离时,应注意分析已知条件,探索三角形全等的条件,理清要测定的距离,画出符合的图形,根据三角形全等说明测量理由.(5)注意只有说明两个直角三角形全等时,才使用“HL”,说明一般的三角形全等不能使用“HL”.6.数学思想方法(1)转化思想:如将实际问题转化数学问题解决等.(2)方程思想:如通过设未知数,根据三角形内角和之间的关系构造方程解决角度问题.(3)类比思想:如说明两个三角形全等时,根据已知条件选择三角形全等经典例题透析类型一:全等三角形性质的应用1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.思路点拨:AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解.解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角.总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边.已知两对对应边,第三对边是对应边,对应边所对的角是对应角.举一反三:【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么?【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE,则AB-BE=DB-BC,即AE=CD。【变式2】如右图,,。求证:AE∥CF【答案】∴AE∥CF2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数与EC的长。思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。解析:在ΔABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为ΔABC≌ΔDEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)。所以∠DFE=100°EC=EF-FC=BC-FC=FB=2。总结升华:全等三角形的对应角相等,对应边相等。举一反三:【变式1】如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°.求证:(1)CD⊥AB;(2)EF∥AC.【答案】(1)因为ΔACD≌ΔECD,所以∠ADC=∠EDC(全等三角形的对应角相等).因为∠ADC+∠EDC=180°,所以∠ADC=∠EDC=90°.所以CD⊥AB.(2)因为ΔCEF≌ΔBEF,所以∠CFE=∠BFE(全等三角形的对应角相等).因为∠CFE+∠BFE=180°,所以∠CFE=∠BFE=90°.因为∠ACB=90°,所以∠ACB=∠BFE.所以EF∥AC.类型二:全等三角形的证明3、如图,AC=BD,DF=CE,∠ECB=∠FDA,求证:△ADF≌△BCE.思路点拨:欲证△ADF≌△BCE,由已知可知已具备一边一角,由公理的条件判断还缺少这角的另一边,可通过AC=BD而得解析:∵AC=BD(已知)∴AB-BD=AB-AC(等式性质)即AD=BC在△ADF与△BCE中∴△ADF≌△BCE(SAS)总结升华:利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形,(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式1】如图,已知AB∥DC,AB=DC,求证:AD∥BC【答案】∵AB∥CD∴∠3=∠4在△ABD和△CDB中∴△ABD≌△CDB(SAS)∴∠1=∠2(全等三角形对应角相等)∴AD∥BC(内错角相等两直线平行)【变式2】如图,已知EB⊥AD于B,FC⊥AD于C,且EB=FC,AB=CD.求证AF=DE.【答案】∵EB⊥AD(已知)∴∠EBD=90°(垂直定义)同理可证∠FCA=90°∴∠EBD=∠FCA∵AB=CD,BC=BC∴AC=AB+BC=BC+CD=BD在△ACF和△DBE中∴△ACF≌△DBE(S.A.S)∴AF=DE(全等三角形对应边相等)类型三:综合应用4、如图,AD为ΔABC的中线。求证:AB+AC2AD.思路点拨:要证AB+AC2AD,由图想到:AB+BDAD,AC+CDAD,所以AB+AC+BC2AD,所以不能直接证出。由2AD想到构造一条线段等于2AD,即倍长中线。解析:延长AD至E,使DE=AD,连接BE因为AD为ΔABC的中线,所以BD=CD.在ΔACD和ΔEBD中,所以ΔACD≌ΔEBD(SAS).所以BE=CA.在ΔABE中,AB+BEAE,所以AB+AC2AD.总结升华:通过构造三角形全等,将待求的线段放在同一个三角形中。举一反三:【变式1】已知:如图,在RtΔABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E,求证:BD=2CE.【答案】分别延长CE、BA交于F.因为BE⊥CF,所以∠BEF=∠BEC=90°.在ΔBEF和ΔBEC中,所以ΔBEF≌ΔBEC(ASA).所以CE=FE=CF.又因为∠BAC=90°,BE⊥CF.所以∠BAC=∠CAF=90°,∠1+∠BDA=90°,∠1+∠BFC=90°.所以∠BDA=∠BFC.在ΔABD和ΔACF中,所以ΔABD≌ΔACF(AAS)所以BD=CF.所以BD=2CE.5、如图,AB=CD,BE=DF,∠B=∠D,求证:(1)AE=CF,(2)AE∥CF,(3)∠AFE=∠CEF思路点拨:(1)直接通过△ABE≌△CDF而得,(2)先证明∠AEB=∠CFD,(3)由(1)(2)可证明△AEF≌△CFE而得,总之,欲证两边(角)相等,找这两边(角)所在的两个三角形然后证明它们全等.解析:(1)在△ABE与△CDF中∴△ABE≌△CDF(SAS)∴AE=CF(全等三角形对应边相等)(2)∵∠AEB=∠CFD(全等三角形对应角相等)∴AE∥CF(内错角相等,两直线平行)(3)在△AEF与△CFE中∴△AEF≌△CFE(SAS)∴∠AFE=∠CEF(全等三角形对应角相等)总结升华:在复杂问题中,常将已知全等三角形的对应角(边)作为判定另一对三角形全等的条件.举一反三:【变式1】如图,在△ABC中,延长AC边上的中线BD到F,使DF=BD,延长AB边上的中线CE到G,使EG=CE,求证AF=AG.【答案】在△AGE与△BCE中∴△AGE≌△BCE(SAS)∴AG=BC(全等三角形对应边相等)在△AFD与△CBD中∴△AFD≌△CBD(SAS)∴AF=CB(全等三角形对应边相等)∴AF=AG(等量代换)6、如图AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.思路点拨:若能证得得AD=AE,由于∠ADB、∠AEC都是直角,可证得Rt△ADF≌Rt△AEF,而要证AD=AE,就应先考虑Rt△ABD与Rt△AEC,由题意已知AB=AC,∠BAC是公共角,可证得Rt△ABD≌Rt△ACE.解析:在Rt△ABD与Rt△ACE中∴Rt△ABD≌Rt△ACE(AAS)∴AD=AE(全等三角形对应边相等)在Rt△ADF与Rt△AEF中∴Rt△ADF≌Rt△AEF(HL)∴∠DAF=∠EAF(全等三角形对应角相等)∴AF平分∠BAC(角平分线的定义)总结升华:条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论。举一反三:【变式1】求证:有两边和其中一边上的高对应相等的两个三角形全等.【答案】根据题意,画出图形,写出已知,求证.已知:如图,在△ABC与△A′B′C′中.AB=A′B′,BC=B′C′,AD⊥BC于D,A′D′⊥B′C′于D′且AD=A′D′求证:△ABC≌△A
本文标题:全等三角形(知识点讲解)
链接地址:https://www.777doc.com/doc-6882529 .html