您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元二次方程习题答案
第1页(共11页)(2016•临朐县一模)已知关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)当时,求的值.【考点】根的判别式.菁优网版权所有【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:①二次项系数不为零;②在有两个不相等的实数根下必须满足△=b2﹣4ac>0;③二次根式的被开方数是非负数.另外,对第(2)依据:=,小题利用转换解出所求的值,要注意验证所求结果是否符合题意.【解答】解:(1)根据题意列出方程组解之得0≤m<1且m≠.(2)∵∴==11﹣2=9∴=±3又由(1)得m<1且m≠所以<0因此应舍去3所以=﹣3【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意:验证所求结果是否符合题意必不可少.第2页(共11页)(2016秋•阿荣旗期末)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】一元二次方程的应用.菁优网版权所有【专题】几何图形问题.【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.【点评】此题主要考查了一元二次方程的应用,首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.第3页(共11页)农场要建一个长方形的猪场,如图,有一段5米长的围墙可利用,其余部分用60米长的木栏围成.若养猪场的面积为200平方米,求养猪场的各边长.【考点】一元二次方程的应用.菁优网版权所有【专题】几何图形问题.【分析】如图,设BC=x,则AB=.根据矩形的面积公式得到x×=200,然后利用公式法解该一元二次方程.【解答】解:如图,设BC=x,则AB=,依题意得x×=200,整理得2x2﹣65x+400=0,解得x=,或x=.则=,或=.答:该养猪场的长为米,宽为米.【点评】本题考查了一元二次方程的应用.此题利用养猪场的周长为定值表示出其长、宽,然后利用矩形的面积公式列出方程来解答问题.第4页(共11页)(2014秋•平川区校级期中)试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.【考点】一元二次方程的定义.菁优网版权所有【专题】证明题.【分析】根据一元二次方程的定义,只需证明此方程的二次项系数a2﹣8a+20不等于0即可.【解答】证明:∵a2﹣8a+20=(a﹣4)2+4≥4,∴无论a取何值,a2﹣8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,∴关于x的方程(a2﹣8a+20)x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.【点评】一元二次方程有四个特点:(1)只含有一个未知数;(2)含未知数的项的最高次数是2;(3)是整式方程;(4)将方程化为一般形式ax2+bx+c=0时,应满足a≠0.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.一元二次方程有四个特点:(1)只含有一个未知数;(2)含未知数的项的最高次数是2;(3)是整式方程;(4)将方程化为一般形式ax2+bx+c=0时,应满足a≠0.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.一元二次方程有四个特点:(1)只含有一个未知数;(2)含未知数的项的最高次数是2;(3)是整式方程;(4)将方程化为一般形式ax2+bx+c=0时,应满足a≠0.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.第5页(共11页)2016秋•桑植县期中)如图已知直线AC的函数解析式为y=x+8,点P从点A开始沿AO方向以1个单位/秒的速度运动,点Q从O点开始沿OC方向以2个单位/秒的速度运动.如果P、Q两点分别从点A、点O同时出发,经过多少秒后能使△POQ的面积为8个平方单位?【考点】一元二次方程的应用.菁优网版权所有【分析】根据直线AC的解析式可得出点A、C的坐标,设运动时间为t,则PO=|t﹣6|,OQ=2t,根据三角形的面积即可得出关于t的一元二次方程,解方程即可得出结论.【解答】解:∵直线AC的函数解析式为y=x+8,∴点C(0,8),点A(﹣6,0).设运动时间为t,则PO=|t﹣6|,OQ=2t,根据题意,得:2t×|t﹣6|=16,解得:t1=2,t2=4,t3=3﹣(舍去),t4=3+.∴经过2秒、4秒或3+秒后能使△POQ的面积为8个平方单位【点评】本题考查了一元二次方程的应用,根据三角形的面积找出关于t的一元二次方程是解题的关键.第6页(共11页)(2014•江西模拟)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.【考点】一元二次方程的应用;全等三角形的应用.菁优网版权所有【专题】几何动点问题;压轴题.【分析】由题可以看出P沿AB向右运动,Q沿BC向上运动,且速度都为1cm/s,S=QC×PB,所以求出QC、PB与t的关系式就可得出S与t的关系,另外应注意P点的运动轨迹,它不仅在B点左侧运动,达到一定时间后会运动到右侧,所以一些问题可能会有两种可能出现的情况,这时我们应分条回答.【解答】解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t∴当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10∴(4分)(2)∵S△ABC=(5分)∴当t<10秒时,S△PCQ=整理得t2﹣10t+100=0无解(6分)第7页(共11页)当t>10秒时,S△PCQ=整理得t2﹣10t﹣100=0解得t=5±5(舍去负值)(7分)∴当点P运动秒时,S△PCQ=S△ABC(8分)(3)当点P、Q运动时,线段DE的长度不会改变.证明:过Q作QM⊥AC,交直线AC于点M易证△APE≌△QCM,∴AE=PE=CM=QM=t,∴四边形PEQM是平行四边形,且DE是对角线EM的一半.又∵EM=AC=10∴DE=5∴当点P、Q运动时,线段DE的长度不会改变.同理,当点P在点B右侧时,DE=5综上所述,当点P、Q运动时,线段DE的长度不会改变.【点评】做此类题应首先找出未知量与已知量的对应关系,利用已知量来表示未知量,许多问题就会迎刃而解.第8页(共11页)(2016秋•阿荣旗期末)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】一元二次方程的应用.菁优网版权所有【专题】几何图形问题.【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.【点评】此题主要考查了一元二次方程的应用,首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.第9页(共11页)(2016春•启东市校级期中)欣欣服装店经销某种品牌的童装,进价为50元/件,原来售价为110元/件,每天可以出售40件,经市场调查发现每降价1元,一天可以多售出2件.(1)若想每天出售50件,应降价多少元?(2)如果每天的利润要比原来多600元,并使库存尽快地减少,问每件应降价多少元?(利润=销售总价﹣进货价总价)【考点】一元二次方程的应用.菁优网版权所有【分析】(1)降低1元增加2件,可知若想每天出售50件,降低(50﹣40)÷2元,列出算式即可.(2)利润=售价﹣进价,根据一件商品的利润乘以销售量得到总利润,列出方程求解即可.【解答】解:(1)(50﹣40)÷2=10÷2=5(元).答:应降价5元;(2)设每件商品降价x元.(110﹣x﹣50)×(40+2x)=40×(110﹣50)+600,解得:x1=10,x2=30,∵使库存尽快地减少,∴x=30.答:每件应降价30元.【点评】考查了一元二次方程的应用,解题的关键是理解题意找到等式两边的平衡条件,列出方程,解答即可.第10页(共11页)(2016秋•高邮市月考)如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿着边AB向点B以2cm/s的速度移动(不与点B重合),动点Q从点B开始沿着边BC向点C以4cm/s的速度移动(不与点C重合).若P、Q两点同时移动t(s);(1)当移动几秒时,△BPQ的面积为32cm2.(2)设四边形APQC的面积为S(cm2),当移动几秒时,四边形APQC的面积为108cm2?【考点】一元二次方程的应用.菁优网版权所有【分析】(1)找出运动时间为t秒时PB、BQ的长度,根据三角形的面积公式结合△BPQ的面积为32cm2,即可得出关于t的一元二次方程,解之即可得出结论;(2)用△ABC的面积减去△BPQ的面积即可得出S,令其等于108即可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)运动时间为t秒时(0≤t<6),PB=AB﹣2t=12﹣2t,BQ=4t,∴S△BPQ=PB•BQ=24t﹣4t2=32,解得:t1=2,t2=4.答:当移动2秒或4秒时,△BPQ的面积为32cm2.(2)S=S△ABC﹣S△BPQ=AB•BC﹣(24t﹣4t2)=4t2﹣24t+144=108,解得:t=3.答:当移动3秒时,四边形APQC的面积为108cm2.【点评】本题考查了一元二次方程的应用以及三角形的面积,根据三角形的面积公式找出关于t的一元二次方程是解题的关键.第11页(共11页)某人将2000元按一年期存入银行,到期后支取1000元,剩下1000元连同利息又全部按一年定期存入,若存款利率不变,到期后可得本息共1320元,求这种存款方式的利率.【考点】一元二次方程的应用.菁优网版权所有【分析】设这种存款方式的
本文标题:一元二次方程习题答案
链接地址:https://www.777doc.com/doc-6975235 .html