您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 数字信号处理 华中 张洪涛 课后答案
部分练习题参考答案第二章2.1)1(2)(3)1()2(2)(nnnnnx)6()4(2)3()2(nnnn2.2其卷积过程如下图所示h(m)x(m)2)5(5.0)4()3()2(5.2)1(5)(2)(nnnnnnny2.3(1)3142,73这是有理数,因此是周期序列。周期N=14。(2)kkp168/12,k取任何整数时,p都不为整数,因此为非周期序列。(3)kkpkkp45.02,5126/5221,当p1,p2同时为整数时k=5,x(n)为周期序列,周期N=60。(4)kkp25.16.12,取k=4,得到p=6,因此是周期序列。周期N=6。2.4(1)mmnRmRnhnxny)()()()()(45(a)当n0时,y(n)=0-0.5-12.5500mm-11210.5h(0-m)0m-121h(-1-m)210m-1h(1-m)0m-121y(n)0-12n(b)当时,30n11)(0nnynm(c)当时,74nnnynm81)(34(d)当n7时,y(n)=0所以743070810)(nnnnnnny或(2))2(2)(2)]2()([)(2)(444nRnRnnnRny)]5()4()1()([2nnnn(3)mmnmnumRnynxny)(5.0)()()()(5mmnmnumR)(5.0)(5.05(a)当n0时,y(n)=0(b)当40n时,nnnnmmnny5.0221215.05.05.0)(10(c)当时,5nnnmmnny5.03121215.05.05.0)(540最后写成统一表达式:)5(5.031)()5.02()(5nunRnynn(4)mmnmRnhnxny5.0)()()()(3(a)当n0时,y(n)=0(b)当时,31nnnnnmmnny5.0121215.05.05.0)(10(c)当时,54n25.05.01621)21(25.05.05.0)(6232nnnnnmmnny(d)当n6时,y(n)=0)5(25.0)4(75.0)3(875.0)2(75.0)1(5.0)(nnnnnny2.6(1)非线性、移不变系统(2)线性、移不变系统(3)线性、移变系统(4)非线性、移不变系统(5)线性、移变系统2.7(1)若)(ng,则稳定,因果,线性,时变(2)不稳定,时因果,0nn0nn时非因果,线性,时不变(3)线性,时变,因果,不稳定2.8(1)因果,不稳定(2)因果,稳定(3)因果,稳定(4)因果,稳定(5)因果,不稳定(6)非因果,稳定(7)因果,稳定(8)非因果,不稳定(9)非因果,稳定(10)因果,稳定2.9因为系统是因果的,所以0)(,0nhn令)()(nnx,)1(5.0)()1(5.0)()(nxnxnhnhny1)1(5.0)0()1(5.0)0(xxhh15.05.0)0(5.0)1()0(5.0)1(xxhh5.0)1(5.0)2()1(5.0)2(xxhh25.0)2(5.0)3()2(5.0)3(xxhh15.0)1(5.0)()1(5.0)(nnxnxnhnh所以系统的单位脉冲响应为)1(5.0)()(1nunnhn2.10(1)初始条件为n0时,y(n)=0设)()(nnx,输出就是)(ny)(nh上式可变为)()1(5.0)(nnhnh可得11)1(5.0)0(hh依次迭代求得5.00)0(5.0)1(hh25.00)1(5.0)2(hhnnhnh5.00)1(5.0)(故系统的单位脉冲响应为)(5.0)(nunhn(2)初始条件为n≥0时,y(n)=0)]()([2)1(nxnyny0,0)(nnh2)]0()0([2)1(xhh22)]1()1([2)2(xhh32)]2()2([2)3(xhhnnhnh2)1(2)(所以)1(2)(nunhn2.11证明(1)因为mmnhmxnhnx)()()()(令,则mnm')()()'()'()()('nxnhmhmnxnhnxm(2)利用(1)证明的结果有)]()([)()]()([)(1221nhnhnxnhnhnxmmnhmnhmx)]()()[(12mkkmnhkhmx)()()(12交换求和的次序有kmkmnhmxkhnhnhnx)()()()]()([)(1221kknhknxkh)]()()[(12)]()([)(12nhnxnh)()]()([21nhnhnx(3)mmnhmnhmxnhnhnx)]()()[()]()([)(2121mmmnhmxmnhmx)()()()(21)()()()(21nhnxnhnx2.12mmnNmnuamRnynxny)()()()()(mmNnmnuamRa)()((a)当n0时,y(n)=0(b)当10Nn时,11/11)/1(1)(110aaaaaaanynnnnmmn(c)当时,Nn1)/1(1)/1(1)(1110aaaaaaaanyNnnNnNmmn最后写成统一表达式:)(1)(11)(111NnuaaanRaanyNnnNn2.13)]4()([*)()()()(11nnnunhnxny)()4()(4nRnunu)()()()()(421nuanRnhnynyn)4(1)(113141nuaaanRaannn2.14(1)采样间隔为005.0200/1T)()82sin()(ˆ0nTtnTftxna)()8100sin(nTtnTn(2))85.0sin()(nnx数字频率5.0,42,周期N=40.920.382.15(1)0)()(0njnnjjeenneX(2)0)(0)()(nnjnjnnjjeeenxeX0)(0nnjee)(01jee(3)0)(0)()(nnjnnjnnnjjeeeenxeX)(11je(4)00cos)()(nnjnnnjjneeenxeX0)()(0][21)(210000nnjjnjjnjnjnjnneeeeee2200)()(cos21cos111112100eeeeeeeeeejjjjj(5)njNNnnnjjenNenxeX12cos1)()(1212)(21NNnnjnNjnNjNNnnjeeee)()()()()()(1)1(1)1(211)1(NjNNjNNjNjNNjNNjjNjNjeeeeeeeee-0.38-0.92x(n)0nNjjjjNjeNeeNeNeN232)123()2cos(cos21cos12sin)2sin(2.16(1)002121)(21)(djedjedeeHnhnjnjnjj为奇数为偶数nnnnn20)1(1(2))sin()()()(011nnhnxny)cos()()()(022nnhnxny2.17(1))(jeX(2))]()([21jjeXeX(3))]()([2122jjeXeX(4))(2jeX2.18采样间隔为25.0T,采样频率8s)(1tya没有失真,因为输入信号的频率21小于42s)(2tya失真,因为输入信号频率52大于42s第三章3.1设和分别是和的傅里叶变换,试求下列序列的傅里叶变换:)(jeX)(jeY)(nx)(ny(1)(2))(0nnx)(*nx(3)(4))(nx)(*)(nynx(5)(6))()(nynx)(nnx(7)(8))2(nx)(2nx(9)奇数,偶数nnnxnx0),2()(9解:(1)FT[]=)(0nnxnnjennx)(0令,0nnn0nnn,则FT[)(0nnx]=)()(00)(jnjnnnjeXeenx(2)FT[]=)(*nx)(*])([)(**jnnjnnjeXenxenx(3)FT[)(nx]=nnjenx)(令,则nnFT[]=)(nxnnjenx)()(jeX(4)FT[]=)(*)(nynx)(jeX)(jeY证明=)(*)(nynxmmnymx)()(FT[]=)(*)(nynxnnjmemnymx)]()([令,则mnkFT[]=)(*)(nynxmjkkjmeekymx)]()([=mjkmkjemxeky)()(=)(jeX)(jeY(5)FT[]=)()(nynxnnjenynx)()(=nnjnjjedeeYnx])(21)[(=denxeYnnjj)()()(21=deXeYjj)()(21)(或者FT[]=)()(nynx)(*)(21jjeYeX(6)因为,对该式两边对nnjjenxeX)()(求导,得到jennxjdedXnnjj)()(FT[])(nnx因此FT[]=)(nnxdedXjj)((7)FT[]=)2(nxnnjenx)2(令,则nn2FT[]=)2(nx取偶数nnjenx2)(=njnnenxnx21)]()1()([21=])()([212121njnnjnjnenxeenx=)]()([21)21(21jjeXeX或者FT[]=)2(nx)()]()([21212121jjjeXeXeX(8)FT[]=)(2nxnnjenx)(2利用(5)题结果,令,则)()(nynxFT[]=)(2nx)(*)(21jjeXeX=deXeXjj)()(21)((9)FT[x]=)(n9
本文标题:数字信号处理 华中 张洪涛 课后答案
链接地址:https://www.777doc.com/doc-6990417 .html