您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 2014年中考数学真题汇编-概率
2014年中考数学真题汇编-概率一、选择题1.(2014•山东枣庄,第4题3分)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定考点:概率的意义;全面调查与抽样调查;中位数;众数;方差分析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项分析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.2.(2014•山东潍坊,第10题3分)右图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量优良的概率是()A、31B、52C、21D、43考点:折线统计图;;几何概率.分析:将所用可能结果列举出来,找出符合要求的,后者除以前者即可。用到的知识点为:概率=所求情况数与总情况数之比解答:7月1日至10日按连续三天划分共有8种情况,其中仅有1天空气质量优良的有4种,所以概率为21,故选C.点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn3.(2014•湖南张家界,第8题,3分)一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.考点:列表法与树状图法;根的判别式.专题:计算题.分析:列表得出所有等可能的情况数,找出满足关于x的方程x2+px+q=0有实数根的情况数,即可求出所求的概率.解答:解:列表如下:﹣214﹣2﹣﹣﹣(1,﹣2)(4,﹣2)1(﹣2,1)﹣﹣﹣(4,1)4(﹣2,4)(1,4)﹣﹣﹣所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根的有4种,则P==.故选D点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.4.(2014山东济南,第11题,3分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为A.32B.21C.31D.41【解析】用H,C,N分别表示航模、彩绘、泥塑三个社团,用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.于是可得到(H,H),(H,C),(H,N),(C,H),(C,C),(C,N),(N,H),(N,C),(N,N),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(H,H),(C,C),(N,N)三种,所以,所求概率为3193,故选C.5.(2014•山东聊城,第8题,3分)下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6考点:随机事件;概率公式分析:根据必然事件、不可能事件、随机事件的概念以及概率的求法即可作出判断.解答:解:A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,此说法正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,此说法正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故此说法错误;D.,取得的是红球的概率与不是红球的概率相同,所以m+n=6,此说法正确.故选:C.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念以及概率的求法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6(2014•浙江杭州,第9题,3分)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两个数的和是2的倍数或3的倍数情况,即可求出所求概率.解答:解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选C点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.(2014年贵州黔东南4.(4分))掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上考点:随机事件分析:根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:A、是随机事件,故A正确;B、不是必然事件,故B错误;C、不是必然事件,故C错误;D、是随机事件,故D错误;故选:A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.(2014•娄底7.(3分))实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值周班长小兵每周对各小组合作学习情况进行综合评分.下表是其中一周的评分结果:组别一二三四五六七分值90968990918590“分值”这组数据的中位数和众数分别是()A.89,90B.90,90C.88,95D.90,95考点:众数;中位数分析:根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.解答:解:把这组数据从小到大排列:85,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B.点评:此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.9.(2014•娄底18.(3分))五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.考点:概率公式.分析:由五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),直接利用概率公式求解即可求得答案.解答:解:∵五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),∴该卡片上的数字是负数的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.(2014年湖北咸宁12题3分)小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.考点:列表法与树状图法.菁优网分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两同学同时出“剪刀”的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两同学同时出“剪刀”的有1种情况,∴两同学同时出“剪刀”的概率是:.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.(2014•江苏苏州,第5题3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.12.(2014•江苏徐州,第3题3分)抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于B.等于C.小于D.不能确定考点:概率的意义.分析:根据概率的意义解答.解答:解:∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是.故选B.点评:本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.13.(2014•江苏盐城,第12题3分)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.考点:几何概率.分析:首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出小鸟落在阴影方格地面上的概率.解答:解:∵正方形被等分成16份,其中黑色方格占4份,∴小鸟落在阴影方格地面上的概率为:=.故答案为:.点评:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.14.(2014•山东临沂,第10题3分)从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(2014•年山东东营,第8题3分)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A.B.C.D.考点:几何概率;平行四边形的性质.菁优网分析:先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可.解答:解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,故飞镖落在阴影区域的概率为:;故选C.点评:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是根据平行线的性质求出阴影部分的面积与总面积的比.16.(2014•四川宜宾,第4题,3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为
本文标题:2014年中考数学真题汇编-概率
链接地址:https://www.777doc.com/doc-6994885 .html