您好,欢迎访问三七文档
初三中考数学压轴题专题1.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)(第1题)(第2题)2.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.22kmC.22kmD.42km3.(2016•苏州)9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)4如图,矩形和矩形中,,,,,连接,是的中点,那么的长是A.B.C.D.5如图,矩形中,,,点是边上的一个动点(点与点,都不重合),现将沿直线折叠,使点落到点处;过点作的角平分线交于点.设,,则下列图象中,能表示与的函数关系是6如图,正方形中,点是边的中点,,交于点,,交于点,则下列结论:①;②;③;④.其中正确的个数是7.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为.(第7题)(第6题)6.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.7.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.8.(3分)(2015•苏州)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则224xy的值为.9.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.(第9题)(第10题)10.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.模拟试题演练:1..如图,在平面直角坐标系中,边长为的正方形斜靠在轴上,点的坐标为,反比例函数的图象经过点,将正方形绕点顺时针旋转一定角度后,使得点恰好落在轴的正半轴上,此时边交反比例图象于点,则点的纵坐标是.2(蔡老师模拟)如图,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为……………()A.1B.2C.3D.4y=kx(x>0)CEMADOyxB(第1题)(第2题)3如图,点A在反比例函数3(0)yxx的图像上移动,连接OA,作OBOA,并满足30OAB.在点A的移动过程中,追踪点B形成的图像所对应的函数表达式为()A.3(0)yxx;B.1(0)yxx;C.3(0)yxx;D.1(0)3yxx(第4题)4.(2016•苏州模拟)如图,OA在x轴上,OB在y轴上,4,3OAOB,点C在边OA上,1AC,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(0)kykx的图象经过圆心P,则k的值是()A.54B.53C.52D.25.如图所示,是边长为的正方形的对角线上的一点,且,为上任意一点,于点,于点,则的值是6(2016•苏州模拟)如图,ABC中,2,4ABAC,将ABC绕点C按逆时针方向旋转得到ABC,使AB//BC,分别延长AB、CA相交于点D,则线段BD的长为.7(2016•苏州模拟)如图,CAAB,DBAB,己知2,6ACAB,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.8(2016•苏州模拟)如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BEEDDC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①05t时,245yt;当6t秒时,ABE≌PQB;②4cos5CBE;当292t秒时,ABE∽QBP;③段NF所在直线的函数关系式为:496yx.其中正确的是.(填序号)参考答案:1.考点:坐标与图形变化---旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.(第1题)(第2题)2.考点:解直角三角形的应用-方向角问题..分析:根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案.解答:解:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=,∴DC=2+.故选:B.点评:此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.3.【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.(第3题)(第4题)4.【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2。∵S△ABC=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.5.考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.(第5题)(第6题)6.考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴=,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.7.考点:三角形中位线定理;等腰三角形的性质;轴对称的性质..分析:先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC的中位线,故可得出GE的长,由此可得出结论.解答:解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.8.考点:勾股定理;直角三角形斜边上的中线;矩形的性质..分析:根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角△BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=4,则在直角△DCF中,利用勾股定理求得:x2+(y﹣4)2=DF2.解答:解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故答案是:16.点评:本题考查了勾股定理,直角三角形斜边上的中线以及矩形的性质.根据“直角△BDE的斜边上的中线等于斜边的一半”求得BF的长度是解题的突破口.9.【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.(第9题)(第10题)10.【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得C
本文标题:初三数学压轴题1
链接地址:https://www.777doc.com/doc-7003705 .html