您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 自动控制原理(非自动化类)习题答案-第二版(孟庆明)
自动控制原理(非自动化类)习题答案第一章习题1-1(略)1-2(略)1-3解:受控对象:水箱液面。被控量:水箱的实际水位hc执行元件:通过电机控制进水阀门开度,控制进水流量。比较计算元件:电位器。测量元件:浮子,杠杆。放大元件:放大器。工作原理:系统的被控对象为水箱。被控量为水箱的实际水位h。给定值为希望水位h(与电位器设定cr电压ur相对应,此时电位器电刷位于中点位置)。当hchr时,电位器电刷位于中点位置,电动机不工作。一但hc≠hr时,浮子位置相应升高(或电动机通过减速器使阀门的开度减小(或增大),以使水箱水位达到希望值hr。出水hrhc水位自动控制系统的职能方框图1-4解:受控对象:门。执行元件:电动机,绞盘。放大元件:放大器。受控量:门的位置测量比较元件:电位计工作原理:系统的被控对象为大门。被控量为大门的实际位置。输入量为希望的大门位置。当合上开门开关时,桥式电位器测量电路产生偏差电压,经放大器放大后,驱动电动机带动绞盘转动,使大门向上提起。同时,与大门连在一起的电位器电刷上移,直到桥式电位器达到平衡,电动机停转,开门开关自动断开。反之,当合上关门开关时,电动机带动绞盘反转,使大门关闭。开闭门的位置门实际仓库大门自动控制开(闭)的职能方框图1-5解:系统的输出量:电炉炉温给定输入量:加热器电压被控对象:电炉1_大门位置绞盘电动机放大器电位器_浮子杠杆水箱阀门减速器电动机放大器电位器放大元件:电压放大器,功率放大器,减速器比较元件:电位计测量元件:热电偶职能方框图:给定炉温炉温—第二章习题2-1解:对微分方程做拉氏变换:⎧X1(s)R(s)−C(s)N1(s)⎪⎪X2(s)K1X1(s)⎪X3(s)X2(s)−X5(s)⎨⎪TsX4(s)X3(s)⎪X5(s)X4(s)−K2N2(s)⎪⎪KX(s)s2C(s)sC(s)⎩35绘制上式各子方程的方块图如下图所示:N1(s)R(s)+X1(s)X2(s)X3(s)X1(s)X2(s)--C(s)X5(s)N2(s)X3(s)X4(s)X5(s)C(s)X4(s)-X5(s)将方块图连接起来,得出系统的动态结构图:N2(s)N1(s)+X1(s)_C(s)R(s)X2(s)X3(s)X4(s)X5(s)K1K3C(s)/R(s),Ts3(T1)s2sKK132--K3K11s2s1TsK2K31Ts1s2sK2K1热电偶电炉加热器电机功率放大电压放大电位器C(s)/N1(s)C(s)/R(s),K2K3TsC(s)/N(s)−2Ts3(T1)s2sKK132-2解:对微分方程做拉氏变换⎧X1(s)K[R(s)−C(s)]⎪⎪X2(s)sR(s)⎪(s1)X3(s)X1(s)X2(s)⎨⎪(Ts1)X4(s)X3(s)X5(s)⎪C(s)X(s)−N(s)4⎪⎪⎩X5(s)(Ts1)N(s)绘制上式各子方程的方块如下图:X2(s)R(s)X1(s)R(s)X2(s)X1(s)X3(s)-C(s)X5(s)N(s)N(s)X5(s)—X3(s)X4(s)X4(s)C(s)将方块图连接得出系统的动态结构图:N(s)X2(s)X5(s)—C(s)R(s)X1(s)X3(s)X4(s)sKKs(s1)(Ts1)(s1)(Ts1)C(s)R(s)kTs2(T1)s(K1)1(s1)(Ts1)C(s)N(s)02-3解:(过程略)C(s)1C(s)G1G2(a)R(s)ms2fsK(b)R(s)1GG−GGGG−GG131423243-K1Ts11s1τsTs+1Ts1Ts1τsK1s1C(s)G2G1G2C(s)G1−G2(c)(d)R(s)1G1G2G1R(s)1−G2G3C(s)G1G2G3G4(e)R(s)1G1G2G2G3G3G4G1G2G3G42-4解:(1)求C/R,令N=0G(s)K1K2K3s(Ts1)K1K2K3G(s)C(s)/R(s)1G(s)Ts2sKKK123求C/N,令R=0,向后移动单位反馈的比较点K3K2)Ts1KnK3s−K1K2K3GnC(s)/N(s)(K−GKnn1KKTs2sKKKs132K1231Ts1s(2)要消除干扰对系统的影响C(s)/N(s)KnK3s−K1K2K3Gn0Ts2sKKK123KnsG(s)nK1K22-5解:(a)(1)系统的反馈回路有三个,所以有3∑LaL1L2L3−G1G2G5−G2G3G4G4G2G5a1三个回路两两接触,可得1−∑La1G1G2G5G2G3G4−G4G2G5(2)有两条前向通道,且与两条回路均有接触,所以P1G1G2G3,11P21,21(3)闭环传递函数C/R为CG1G2G31R1G1G2G5G2G3G4−G4G2G5(b)(1)系统的反馈回路有三个,所以有3∑LaL1L2L3−G1G2−G1−G1a1三个回路均接触,可得1−∑La1G1G22G1(2)有四条前向通道,且与三条回路均有接触,所以P1G1G2,11P2G1,21P3G2,31P4−G1,41(3)闭环传递函数C/R为CG1G2G1G2−G1G1G2G2R1G1G22G11G1G22G12-6解:用梅逊公式求,有两个回路,且接触,可得1−∑La1G1G2G3G2,可得C(s)G1G2G3G2G3C(s)C(s)/R(s)R(s)1G1G2G3G2N1(s)(1G2)G3C(s)−1(1G1G2G3G2)−1C(s)N2(s)1G1G2G3G21G1G2G3G2N3(s)E(s)1G2−G2G3E(s)−C(s)−G2G3−G1G2G3R(s)1G1G2G3G2N1(s)N1(s)1G1G2G3G2E(s)−C(s)−(1G2)G3E(s)−C(s)1N2(s)N2(s)1G1G2G3G2N3(s)N3(s)第三章习题103-1解:(原书改为G(s))0.2s1采用K0,KH负反馈方法的闭环传递函数为10K0(s)C(s)KG(s)110KHR(s)01G(s)K0.2s1H110KH要使过渡时间减小到原来的0.1倍,要保证总的放大系数不变,则:(原放大系数为10,时间常数为0.2)10K0⎧10⎧K10⎪0⎨110K⇒⎨H⎩K0.9⎪H110K10⎩H3-2解:系统为欠阻尼二阶系统(书上改为“单位负反馈……”,“已知系统开环传递函数”)%e−/1−100%1.3−1100%21tp0.11−2n5解得:n33.710.358所以,开环传递函数为:113647.1G(s)s(s24.1)s(0.041s1)3-3解:(1)K10s−1时:100G(s)s210s2100n2n10解得:n10,0.5,%16.3%,tp0.363(2)K20s−1时:200G(s)s210s2200n2n10解得:n14.14,0.354,%=30%,tp0.238结论,K增大,超调增加,峰值时间减小。3-4解:(1)a.0.1,5s−1时,n2%e−/1−100%72.8%3.5t7ssnb.0.1,10s−1时,n2%e−/1−100%72.8%3.5t3.5ssnc.0.1,1s−1时,n62%e−/1−100%72.8%3.5t35ssn0.5,5s−1时,(2)n2%e−/1−100%16.3%3.5t1.4ssn(3)讨论系统参数:不变,%不变;不变,n增加,则ts减小;n不变,增加,则%减小,ts减小3-5解:(1)(a)用劳思判据s3s2s1s0120410091000系统稳定。(b)用古尔维茨判据2011009D120,D280201010092000100D38000系统稳定。(2)(a)用劳思判据s4s3s2s1s03104.7−3.25532521020系统不稳定。(b)用古尔维茨判据71015100101D110,D247,D532−1533031(其实D4不必计算,因为D30)1015103021503000D4−30602系统不稳定。3-6解:(1)系统闭环特征方程为0.2S30.8S2−sK0劳思表s3s2s1s00.2−10.8K−K−14K若系统稳定,则:−K−10,K0。无解4(2)系统闭环特征方程为0.2S30.8S2(K−1)sK0劳思表s3s2s1s0K−1K0.20.83K−14K3若系统稳定,则:K−10,K044解得K33-7解:10(s1)(a)系统传递函数:s321s210s10劳斯表:8s3s2s1s0121200/2110101000系统稳定。10(b)系统传递函数:s2101s10劳思表:s2s1s0110110100系统稳定。3-8解:系统闭环特征方程为:0.01s32s2sK0劳思表:s3s2s10.0122−0.01K1K2Ks02−0.01K当20,0,K0时系统稳定2稳定域为:0,0K2003-9解:(1)解法一、因为1,属于Ⅰ型无差系统,开环增益K10,故当r(t)1(t)时,ess0;1当r(t)t1(t)时,e0.1;当r(t)t21(t)时,e∞。ssssK解法二、系统的闭环特征方程为:0.05s30.6s2s100劳思表:s3s2s1s00.0510.61106109系统稳定。1E(s)R(s)R(s)sEiR1G(s)当输入r(t)1(t)时,R(s)1,elimsElims110ssss→0101sss→0s(0.1s1)(0.5s1)输入r(t)t1(t)时,R(s)1,elimsElims110.1ssss210s2s→0s→01s(0.1s1)(0.5s1)输入r(t)t21(t)时,R(s)2,elimsElims11∞sss10s3s3s→0s→01s(0.1s1)(0.5s1)(2)解法一、因为1,属于Ⅰ型无差系统,开环增益K7,故当r(t)1(t)时,e0;ss8当r(t)t1(t)时,e81.14;当r(t)t21(t)时,e1∞。ssssK7解法二、系统的闭环特征方程为:s46s310s215s70劳思表:s4s3s2s1s0167.59.471071507系统稳定。1E(s)R(s)R(s)sEiR1G(s)当输入r(t)1(t)时,R(s)1,elimsElims110sss17(s1)sss→0s→0s(s4)(s22s2)输入r(t)t1(t)时,R(s)1,elimsElims118/7sss7(s1)s2s2s→0s→01s(s4)(s22s2)10输入r(t)t21(t)时,R(s)2,elimsElims11∞sss7(s1)s3s3s→0s→01s(s4)(s22s2)(3)解法一、因为2,属于Ⅱ型无差系统,开环增益K8,故当r(t)1(t)时,ess0;22当r(t)t1(t)时,ess0;当r(t)t1(t)时,ess0.25。K解法二、系统的闭环特征方程为:0.1s3s24s80劳思表:s3s2s1s00.14183.28系统稳定。1E(s)R(s)R(s)sEiR1
本文标题:自动控制原理(非自动化类)习题答案-第二版(孟庆明)
链接地址:https://www.777doc.com/doc-7039630 .html