您好,欢迎访问三七文档
1、刚性梁ABC由抗拉刚度相等的三根杆悬挂着。尺寸如图所示,拉力P为已知。求各杆的轴力。ABC123408080P75ABC123408080P75变形相容条件变形后三根杆与梁仍绞接在一起。l1l2l3变形几何方程lll3122ABC123P75lll3122补充方程N1N2N3P4080800321PNNN04232PNNEAlNEAlNEAlN3311222静力平衡方程2、圆轴如图所示。已知d1=75mm,d2=110mm。材料的许用切应力[]=40MPa,轴的许用单位扭转角[]=0.80/m,剪切弹性模量G=80GPa。试校核该轴的扭转强度和刚度。d2d1ABC8KN.m5KN.m3KN.md2d1ABC8KN.m5KN.m3KN.m解:画扭矩图+8KN.m3KN.m32232281030.1[]16pTMPaWdd2d1ABC8KN.m5KN.m3KN.m+8KN.m3KN.m31131131036.2[]16pTMPaWdd2d1ABC8KN.m5KN.m3KN.m+8KN.m3KN.m002221800.4[]pTmGI001111800.69[]pTmGIDCBAP1P2l/2l/2l/33、外伸梁受荷载如图所示,已知l=0.6m,P1=40kN,P2=15kN,y1=72mm,y2=38mm,Iz=5.73106mm4,[t]=45MPa,[C]=175MPa.试校核梁的强度。y2zy1y解:计算支座反力,画弯矩图DCBAP1P2l/2l/2l/3FAFB032,021lPlPlFMABkNFA15DCBAP1P2l/2l/2l/34.5kN·m3kN·m+-bd最大正弯矩在D截面最大负弯矩在B截面mkNMD.5.4mkNMB.3y2zy1yB截面上拉下压][202max,CzBCBMPaIyM][7.371max,tzBtBMPaIyMDCBAP1P2l/2l/2l/34.5kN·m3kN·m+-bdy2zy1yDCBAP1P2l/2l/2l/34.5kN·m3kN·m+-bd][302max,tzDtDMPaIyMD截面下拉上压][5.561max,CzDCDMPaIyM4,一矩形截面简支梁。已知l=3m,h=160mm,b=100mm,h1=40mm,F=3KN,求m—m上K点的切应力及该截面上最大切应力。bhzKh1l/6ABFFmml/3l/3l/3AFS23max)4(222yhIFzSbhzKh1l/6ABFFmml/3l/3l/3解:因为两端的支座反力均为F=3KN所以m—m截面的剪力为FS=-3KNhybhIz13,12MpayhIFzS21.0)4(222MPaAFS28.023max5、确定梁的连续条件ABCDFGyyBBBB右左右左,yyCC右左右左右左DDDDyy,yyFF右左但是FFCC右左右左,6、已知:图示各单元体。要求:分别按第三和第四强度理论求相当应力。120MPa120MPa(a)(b)100MPa40MPa40MPa1、对于图(a)所示的单元体。01MPa12032MPa120)120(0*313213232221421*MPa1200120120120120021222120MPa120MPa(a)1、求主应力2、求相当应力对于图b所示的单元体1、求主应力单元体为平面应力状态MPaxyxyx120)2(222主MPaxyxyx20)2(222主MPax010MPay40MPax40(b)100MPa40MPa40MPaMPa1201MPa20203MPa120*3132、求相当应力MPa4.11121*2132322214(b)1004040MPa1201MPa202037、直径d=40mm的实心钢圆轴,在某一横截面上的内力分量为N=100KN,Mx=0.5KN.m,My=0.3KN.m。已知此轴的许用应力[]=150MPa。试按第四强度理论校核轴的强度。xzyNMyMxxzyNMxN产生轴向拉伸My产生xz平面弯曲Mx产生扭转由N引起拉伸正应力为AN1由My引起最大弯曲正应力为WMyy2MyAA点为危险点由Mx引起最大剪应力为WMtx解:xzyNMxMyAWMtx21][3224r由第四强度条件8、图示一螺栓接头。已知FP=40kN,螺栓的许用切应力[τ]=130MPa,许用挤压应力[bs]=300MPa。试按强度条件计算螺栓所需的直径。d102010PFPFPbsPsFFFF,2][2],[4212PPsFddFAF][02.0],[02.02bsPbsPbsbsbsFddFAF取d=max{d1,d2}9、细长压杆如图所示,两端球形铰支,横截面面积均为A=6cm2,杆长l=1m,弹性模量E=200Gpa,试用欧拉公式计算不同截面杆的临界力。(1)圆形截面;(2)空心圆形截面,内外径之比=½;(3)矩形截面h=2b。dDbhdDbh(1)圆形截面lEIFcr2242dAmmd6.27mmdI4441085.264kNlEIFcr.dDbhlEIFcr224)1(4)(2222DdDAmmDI44441077.464)1(kNlEIFcr.(2)空心圆形截面,内外径之比=½mmD9.31dDbhlEIFcr22bbhA22mmbbhbIIy44443min105.1612212kNlEIFcr.(3)矩形截面h=2b。2Ab10、外伸梁受力如图所示,已知弹性模量EI。梁材料为线弹性体。求梁C截面和D截面的挠度。ABCPaPDaaRARBP1P22321PPRB221PPRAABCPaPDaaRBRAAC:xPPxM12112)(P1P2ABCPaPDaaRBRACB:)()(axPxPPxM2122122x1x2x3BD:xPxM233)(AC:xPPxM12112)(CB:)()(axPxPPxM2122122P1P2ABCPaPDaaRBRAx1x2x3BD:xPxM233)((1)求C截面的位移axPxM2212)(013PxM)(2111xPxM)(xPPxM12112)()()(axPxPPxM2122122P1P2ABCPaPDaaRBRAx1x2x3xPxM233)(axPxM2212)(013PxM)(2111xPxM)(aaaadxdxPxMEIxMdx021222100)()(0)(123EIPaPUfC1P1=P2=PP1P2ABCPaPDaaRBRAx1x2x3(2)求D截面位移AC:xPPxM12112)(CB:)()(axPxPPxM2122122BD:xPxM233)(2222xPxM)(xPxM323)(2121xPxM)(P1P2ABCPaPDaaRBRAx1x2x3xPPxM12112)()()(axPxPPxM2122122xPxM233)(2222xPxM)(xPxM323)(2121xPxM)(aaadxxxPdxxaxP0333222221))(()2)](([)(1293EIPaPUfD2P1=P2=P11、刚架结构如图所示。弹性模量EI已知。材料为线弹性。不考虑轴力和剪力的影响,计算C截面的转角和D截面的水平位移。ABCDaa2amABCDaa2am在C截面虚设一力偶mcPmcRHV)(mmaPVRC21PH在D截面虚设一水平力P解:计算支座反力ABCDaa2ammcPRHVxCD:xmmaPxMc)]([)(21xPxM)(axmxMc2)()(mmaPVRC21PHABCDaa2ammcPRHVxCB:PxmammaPxMcc221)]([)(xaPxM2)(0mxMc)()(mmaPVRC21PHABCDaa2ammcPRHVxxPxM)(0mxMc)(AB:M(x)=Px)(mmaPVRC21PHCD:xmmaPxMc)]([)(21xPxM)(CB:PxmammaPxMcc221)]([)(xaPxM2)(AB:M(x)=PxxPxM)(ABCDaa2ammcPRHVPxUδ0mc0PaadxxamxdxamxEI020221)([)(617]002aEImaxdxaxmxMc2)(0mxMc)(0mxMc)(mccUθaadxmdxaxamxEI0200221[aEImadx03200]()ABCDaa2ammcPCD:xmmaPxMc)]([)(21CB:PxmammaPxMcc221)]([)(AB:M(x)=Px0mc0P
本文标题:材料力重点例题3
链接地址:https://www.777doc.com/doc-7058746 .html