您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 机械臂控制系统的设计
机械臂控制系统的设计1引言近年来,随着制造业在我国的高速发展,工业机器人技术也得到了迅速的发展。根据负载的大小可以将机械臂分为大型、中型、小型三类。大型机械臂主要用于搬运、码垛、装配等负载较重的场合;中小型机械臂主要用于焊接、喷漆、检测等负载较小的场合。随着国外工业机器人技术的不断发展,尤其是一些中小型机器人,它们具有体积小、质量轻、精度高、控制可靠的特点,甚至研发出更为轻巧的控制箱,可以在工作区域随时移动,这样大大方便了工作人员的操作。在工业机器人的应用中最常见的是六自由度的机械臂。它是由6个独立的旋转关节串联形成的一种工业机器人,每个关节都有各自独立的控制系统。2机械臂硬件系统设计2.1机械臂构型的选择要使机器臂的抓持器能够以准确的位置和姿态移动到给定点,这就要求机器人具有一定数量的自由度。机器臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。为了使安装在双轮自平衡机器人上的机械臂能够具有完善的功能,能够完成复杂的任务,将其自由度数目定为6个,这样抓持器就可以达到空间中的任意位姿,并且不会出现冗余问题。在确定自由度后,就可以合理的布置各关节来分配这些自由度了。由于计算数值解远比封闭解费时,数值解很难用于实时控制,这样,后3个关节就确定了末端执行器的姿态,而前3个关节确定腕关节原点的位置。采用这种方法设计的机械臂可以认为是由定位结构及其后面串联的定向结构或手腕组成的。这样设计出来的机器人都具有封闭解。另外,定位结构都采用简单结构连杆转角为0或90°的形式,连杆长度可以不同,但是连杆偏距都为0,这样的结构会使推倒逆解时计算简单。定位机构是涉及形式主要有以下几种:SCARA型机械臂,直角坐标型机械臂,圆柱坐标型机械臂,极坐标型机械臂,关节坐标型机械臂等。SCARA机械臂是平面关节型,不能满足本文对机械臂周边3维空间任意抓取的要求;直角坐标型机械臂投影面积较大,工作空间小;极坐标方式需要线性移动,机械臂如需较大的工作空间,则臂长较长;和其他类型相比关节型机械臂在其工作空间内干涉是最小的,是一种较为优良的结构。所以初步确定本文机械臂构型为关节型。2.2臂杆长度的确定机械臂的臂杆设计如表2-1所示:表2-1机械臂臂杆长度臂体名称大臂L1小臂L2机械手长度(mm)5505001502.3机械臂结构设计2.3.1关节结构方案为了便于机械臂关节的模块化涉及和简化结构,本设计使用电机直接连接减速器,减速器连接臂体连接结构。图2-1是关节结构动力传递方案。图2-1关节结构动力传递方案使用这种联接方式因中间零件少,故形变量与回程间隙都较小,且能保持较高的结构刚度。2.4关键部件的选型2.4.1关节负载的估算各关节的动态参数是驱动元件的选择和关节传动零件选择的重要依据。由机器人动力学相关知识可知完整的机器人动力学方程为:式中一般使用静力学方法和动力学方法计算机器人的动力参数,速度较低的机械,在运行过程中,惯性引起的动载荷较小,一般使用静力学方法,忽略C和F的影响。而对于运行速度较高机械,其动载荷也较大,即C项的影响较大,甚至超过静载荷;且粘滞摩擦也较大,同时考虑静载荷和动载荷,需使用动力学计算。本文的设计要求是一款可以安装在全向移动平台上的轻型机械臂,对关节的旋转速度要求不高,因此估算机械臂力矩时采用静力学方法。图2-2机械臂受力简图估计关节力矩之前,首先假设每个关节的重力作用集中在中心,将连杆的重量均分于各关节,机械臂受力简图如图2-2所示,使用静力学方法计算关节所受力矩的最大值。六自由度机械臂三维静态仿真图如图2-3所示:图2-3三维静态仿真图2.4.2关节驱动系统电机的选型机械臂的驱动系统,有三种基本类型,即电动驱动、液压驱动和气动驱动,也可以根据需要组合成为复合式的驱动系统。(1)电机驱动目前机械臂上使用最多的一种驱动方式是电动驱动,它利用各种电机产生的力和力矩,直接或通过机械传动装置来驱动执行机构。这类系统效率比液压驱动和气动驱动系统高,且电源方便,所以在机器人中得到了广泛的应用。(2)液压驱动液压驱动的主要优点是功率密度大。液压缸也可直接作为臂体的一部分,因而结构紧凑,刚性好。由于液压油液的不可压缩性,系统的固有频率较高,快速响应好,可实现频繁平稳的变速和换向。液压系统易于实现过载保护,动作平稳、耐冲击、耐振动、防爆性好。(3)气动驱动气动驱动系统通常由气缸、气阀、气罐和空压机组成,其特点是气源方便、结构简单、造价较低、维修方便。与液压驱动系统相比,同体积条件下功率较小,也难以进行速度控制,多用于中、小负荷且精度要求不高的机器人控制系统中。综上,本设计决定使用电动驱动方式为机械臂提供动力,步进电机为驱动电机。2.4.3驱动系统减速器的选型结合上文,本文将使用步进电机为驱动电机为机械臂提供动力,结合各关节受力和机械臂关节传动机构组合方式,应在驱动电机和机械臂关节间安装减速器做扭矩适配,降低输出轴的速度,增大输出扭矩。一般行星齿轮减速器、蜗轮蜗杆减速器、谐波减速器、齿轮减速器等可以和步进电机适配。1、行星齿轮减速器行星齿轮减速器通常由一个或者多个外部齿轮围绕着一个中心齿轮旋转,就像行星绕着太阳公转一样。在工作状态中多个行星齿轮协同工作,因而承载能力大,属纯扭矩传动,工作平稳。单级行星齿轮减速器的减速比一般较小,需要增加减速比时只需增加行星轮系的级数即可,而整体体积变化较小。2、蜗轮蜗杆减速器蜗轮蜗杆减速器的传动比大,一般为10-80,也可以达到80以上。此外,蜗轮蜗杆减速器机械结构紧凑、热交换性能好、工作平稳、噪声小、具备机械自锁能力,安全性高。3、谐波减速器波发生器,柔轮,刚轮是谐波减速器的三大部分,谐波齿轮减速器传动结构简单,减速比高,同时啮合的齿数多,运行平稳、传动承载力大,齿侧间隙小,传动精度高,传动误差只有普通圆柱齿轮传动的1/4左右,传动空程小,适用于反向转动,在机器人领域有着广泛应用。但对柔轮材料有较高的强度要求,工艺复杂。4、齿轮减速器圆柱齿轮减速机构为定传动比齿轮机构,其传动准确,平稳高效,传动功率范围和速度范围大,广泛用于各种仪器仪表中,但其制造和安装精度要求高,高减速比时结构较为复杂,体积一般较大。综上,初步去确定使用谐波齿轮减速器,减速比大,传动精度高,体积小巧,输入轴与输出轴轴线重合,可很方便地与步进电机组合安装成为机械臂关节的一部分,同时便于机械臂的模块化设计。本文将采用HarmonicDriveCSF-mini系列组合型谐波减速器,其中腰关节采用型号为CSF-14-100-2XH-F;肘关节俯仰和肘关节旋转采用CSF-11-100-2XHF,腕俯仰采用CSF-8-100-2XH-F。2.4.4电机驱动器的选型虽然步进电机广泛地应用于各行各业,但步进电机并不能像普通的直流电机那样通过控制输入的等效电压就可以驱动和调速。它必须利用电子电路,将直流电变成分时多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作。常见的有单片机I/O直接控制,步进电机驱动芯片、运动控制卡。1、单片机I/O直接控制方式使用单片机内部的锁存器、计数/定时器,和并行I/O接口,可以实现对步进电机的控制,脉冲环形分配器的功能由单片机系统实现完成,通过软件中断方式实现步进电机的变速控制,改变通电顺序则可改变转向。2、步进电机专用驱动芯片步进电机专用驱动芯片一般集成度较高,外围电路简单,一般有ENABLE、STEP和DIR三个输入端,ENABLE为使能端,使能有效时方可驱动步进电机;STEP为脉冲输入,输入一个脉冲,即可驱动步进电机产生微动;DIR为方向,改变DIR逻辑电平即可换向。3、运动控制卡驱动控制通过计算机可直接控制步进电机,运动控制卡是专用于步进电机控制的PC插卡,是应对复杂系统的控制而出现的,一般可同时控制十几台甚至几十台步进电机的运动,一般价格很高。综上,本设计将使用步进电机专用驱动芯片来驱动步进电机。其中肩关节和肘关节俯仰有自锁需求,使用东芝THB71283A128高细分步进电机专用驱动芯片驱动,其他轴选用A4988微步驱动器。表2-3步进电机驱动芯片相关参数型号最高耐压电流使用温度自锁性能细分模式THB712840VDC±3.3A-40-85(℃)半流锁定1-128(8种)A498835VDC±2A-20-85(℃)无1-16(5种)2.4.5传感器的选型本文将使用步进电机和谐波齿轮减速器为机械臂提供动力,步进电机只需要通控制驱动脉冲的数量,即可简单实现较高精度的定位,并使工作物在精确地停在目标位置。步进电机以细分后的步距角为基本单位进行定位。以两相电机为例,其步距角为1.8°,使用1/16细分方式进行驱动,那么每给驱动器一个脉冲步进电机转子旋转的角度为角度=1.8°*1/16=0.1125°,转子旋转一周需要脉冲数为360°/0.1125°=3200,需要旋转到其他任意角度的计算方式与上式相同。本文使用限位开关的型号为Omron微动开关SS-5摆杆型限位开关。表2-4微动限位开关参数型号按键力度接触规格触发精度耐热温度SS-51.47N1C(双投型)±0.5mm85°2.4.6下位机的选型对于机器臂控制,需要对多台电机进行联动控制。为了实现多台电机之间的通信和控制,必须建立一套数据通信系统来完成主计算机与各运动控制单元间的数据交换。基于现场总线的分布式控制技术能够解决这些问题。但常见的分布式控制系统又有USB总线,SERCOS总线,RS-485总线和CAN总线等这几种。本设计将采用RS-485总线来实现机械臂的分布式控制。本设计选用了TI公司的2000系列DSPTMS320LF2407作为控制单元。其时钟频率可达40MHz,具有高速的处理能力,片内资源丰富,特别是它特有两个内置事件管理器模块(EVA、EVB)。通过JTAG接口可以方便的对DSP进行全速的在系统调试仿真。TMS320LF2407的电源电压为3.3V,正常下作电流为80mA左右,抗干扰能力较强。2.4.6.1关节控制器硬件电路关节控制器是以DSP芯片为核心,芯片本身及其外围电路的性能直接决定了系统的性能。故芯片的选择及其外围电路的设计,也就显得十分的重要。下面将通过单个模块电路的方式分别介绍控制器硬件电路。(1)电源电路通过开关电源,接入B0505LS模块产生稳定的的5V电压作为TPS7333芯片的供电电压,管脚8做为2407的上电复位信号。管角5,6通过滤波电容输出作为2407的供电电压(3.3V)。如图2-5。图2-4电源电路(2)时钟电路TMS320LF2407的时钟源可以来自外部有源晶振也可以用晶体,利用内部振荡器。一般经常使用外部时钟输入,因为使用外部时钟时,时钟的精度高、信号比较稳定,外部时钟电路和锁相环电路如图2-6所示。图2-5时钟电路(3)JTAG接口电路仿真接口电路如图2-7所示.目标层次的TI调试标准使用5个标准的IEEE1149.1(JTAG)信号(TRST、TCK、TMS、TDI、TDO)和两个TI扩展口(EMU0、EMU1)。JTAG目标器件通过专用的仿真端口支持仿真,此端口由仿真器直接访问并提供仿真功能。JTAG接口电路为仿真器与微机的接口电路,便于系统进行在线调试。图2-6JTAG电路(4)外接SRAM电路TMS320LF2407最多可寻址64K的外部程序空间和64K的外部数据空间。由于控制算法的需要,本系统需扩充外部RAM。TMS320LF2407片内的Flash可用作程序存储器,但在开发阶段使用Flash作为程序存储器极为不便,因为每一次程序的修改都需要对Flash进行清除、擦除和编程操作,而且进行CCS调试时只能设置硬件断点,故从调试的角度考虑,应扩充程序RAM。这里用的是CY7C1021V33芯片,它是64K*16bit的SRAM,存取时间为15ns,故不需要插入等待周期,可保证系统全速运行。图2-8为外接SRAM扩展电路图。图2-7SRAM扩展电路图(5)编码器处理电路增量式编码器信号处理电路如图2-9所示。图2-8增量式编码器信号处理电路(6)霍尔接近开关电路本设计选用A31443
本文标题:机械臂控制系统的设计
链接地址:https://www.777doc.com/doc-7081895 .html