您好,欢迎访问三七文档
(a)da=scan(file=D:/新建文件夹/m-ew6299.txt)Read456itemsm1=ar(da,method=mle)m1$order[1]1m2=arima(da,order=c(1,0,0))m2Call:arima(x=da,order=c(1,0,0))Coefficients:ar1intercept0.22671.0626s.e.0.04560.3297sigma^2estimatedas29.68:loglikelihood=-1420.11,aic=2846.22(1-.2267)*1.0626[1]0.8217086sqrt(m2$sigma2)[1]5.448175Box.test(m2$residuals,lag=12,type=Ljung)Box-Ljungtestdata:m2$residualsX-squared=13.6826,df=12,p-value=0.3214因为PV值0.05,检验结果是不显著的,因此不能拒绝原假设,所以模型是充分的(b)da=scan(file=D:/新建文件夹/m-ew6299.txt)Read456itemsacf(da)m3=arima(da,order=c(0,0,1))m3Call:arima(x=da,order=c(0,0,1))Coefficients:ma1intercept0.23851.0605s.e.0.04490.3153sigma^2estimatedas29.59:loglikelihood=-1419.37,aic=2844.73(1-.2385)*1.0605[1]0.8075708sqrt(m2$sigma2)[1]5.448175Box.test(m2$residuals,lag=12,type=Ljung)Box-Ljungtestdata:m2$residualsX-squared=13.6826,df=12,p-value=0.3214因为PV值0.05,检验结果是不显著的,因此不能拒绝原假设,所以模型是充分的(c)AR模型:向前一步预测:rt+1=0.2817+0.2267rt+at+1条件期望:rt(1)+0.2817+0.2267rt预测误差:et(1)=rt+1-rt(1)=at+1预测误差的方差为σ2=29.68向前2步预测:rt+2=0.8217+0.2267rt+1+at+2条件期望:rt(2)=0.2817+0.2267rt+1预测误差:et(2)=rt+2-rt(2)=at+2预测误差的方差为σ2=29.68MA模型:向前一步预测:rt+1=1.0605+at+1+0.2385at条件期望:rt(1)=1.0605+0.2385at预测误差:et(1)=rt+1-rt(1)=at+1预测误差的方差为σ2=29.59向前2步预测:rt+2=1.0605+at+2+0.2385at+1条件期望:rt(2)=1.0605预测误差:et(2)=rt+2-rt(2)=at+2+0.2385at+1预测误差的方差为σ2=29.68*(1+0.23852)=31.27(d)两个模型相比,在MA模型中残差平方和更小并且MA模型的loglokelihood更接近于0,因此MA模型拟合的更好。
本文标题:AR
链接地址:https://www.777doc.com/doc-7098597 .html