您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 医学试题/课件 > 勾股定理教学设计方案
1勾股定理教学设计方案章节名称勾股定理计划学时1学习内容分析本节课是勾股定理的第1课时,根据课程标准的要求,注意让学生经历探索勾股定理的过程,鼓励学生用不同的方法解决问题,在解决问题的过程中,注意渗透数形结合的思想。另外,勾股定理具有很高的文化价值,这点要充分体现,以提高学生探索的欲望。学习者分析学生经历了一年的初中学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点,激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会。教学目标知识与技能:1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。2、了解勾股定理的内容。3、能利用已知两边求直角三角形另一边的长。2过程与方法:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。教学重点及解决措施重点:探索和证明勾股定理教学难点及解决措施难点:用拼图方法证明勾股定理教学设计思路本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。教学过程(可续页)教学环节教学内容所用时间教师活动学生活动设计意图创设情境导入新课教师引导学生观察教材第70页24届国际数学家大会的会徽,并出1老师引导观察学生独立思考这样的引入可唤起学生的好奇心和求知欲,3示自制教具(赵爽弦图),观察它们的联系,提出问题,数学家大会为什么用它做会徽呢?它有什么特殊的含义吗?激发学生对勾股定理的兴趣,从而较自然的引入课题。新知探究毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。(1)同学们,请你也来观察下图中的地面,看看能发现些什么?(2)你能找出图18.1-1中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?9教师启发学生总结规律通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。“问题是思维的起点”,通过层层设问,引导学生发现新知。深入探究交流归纳(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?10老师启发引领思考学生交流思考渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互4ABC图1图18.1-2如图18.1-2,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形。仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形。(2)想一想,怎样利用小方格计算正方形A、B、C面积?助中得到提高。拼图验证加深理解猜想:直角三角形两直角边的平方和等于斜边的平方。(1)让学生利用学具进行拼图10教师指导学生拼图学生动手合作交流通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。利用分组讨论,加强合作意识。加强数学严密教育。从而更好地理解代数与图形相结合5应用新知解决问题1)做一做P的面积=AB=BC=AC=(2)X=7教师引导学生思考完成让学生有机地把握所学的知识技能,用来解决实际问题,加强对定理的理解,从而突出重点。突破重点和难点的方法,发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。回顾小结整体感知1、本节课我们经历了怎样的过程?2、本节课我们学到了什么?3、学了本节课后我们有什么感想?2学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力P625400BAC62x6布置作业巩固加深1.必做题:习题18.1第1,2,3题。课本“阅读与思考”了解勾股定理的多种证法。(根据自己的情况选择完成)1针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,又使学有余力的学生获得最佳发展课堂教学流程图创设情境导入新课新知探究深入探究交流归纳拼图验证加深理解应用新知解决问题回顾小结整体感知布置作业巩固加深教学反思新课程标准要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。为此我在教学设计中注重了以下几点:一、让学生主动想学通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。二、在课堂教学中,始终注重学生的自主探究首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。三、教会学生思维,培养学生多种能力7课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……四、注重了数学应用意识的培养数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
本文标题:勾股定理教学设计方案
链接地址:https://www.777doc.com/doc-7183503 .html