您好,欢迎访问三七文档
11、一天小明和冬冬利用温差来测量山峰的高度。冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?2、已知水结成冰的温度是0C,酒精冻结的温度是–117℃。现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?3、有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。运算式如下:(1),(2),(3)。另有四个有理数3,-5,7,-13,可通过运算式(4)使其结果等于24。4、现有有理数将这四个数3、4、-6、10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,请你写出两个符号条件的算式5、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?3分城市时差/时纽约-13巴黎-7东京+1芝加哥-146.某股民持有一种股票1000股,早上9∶30开盘价是10.5元/股,11∶30上涨了0.8元,下午15∶00收盘时,股价又下跌了0.9元,请你计算一下该股民持有的这种股票在这一天中的盈亏情况.7、(本题8分)“十一”黄金周,武商家电部大力促销,收银情况一直看好。下表为当天与前一天的营业额的涨跌情况。已知9月30日的营业额为26万元.10月1日2日3日4日5日6日7日4320-1-3-5(1)黄金周内收入最低的是哪一天?(直接回答,不必写过程)。(2)黄金周内平均每天的营业额是多少?28、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?9、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?10.10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1与标准重量相比较,10袋小麦总计超过或不足多少千克?10袋小麦总重量是多少千克?每袋小麦的平均重量是多少千克?11.(8分)某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负):+0.6,+1.8,―2.2,+0.4,―1.4,―0.9,+0.3,+1.5,+0.9,―0.8问:该面粉厂实际收到面粉多少千克?12.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、3、5、+4、8、+6、3、6、4、+10。(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?13.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?14.某检修小组1乘一辆汽车沿公路检修线路,约定向东为正。某天从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。另一小组2也从A地出发,在南北向修,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8。(1)分别计算收工时,1,2两组在A地的哪一边,距A地多远?(2)若每千米汽车耗油a升,求出发到收工各耗油多少升?315.(本题8分)邮局职工小王需要把当天的报纸送到小丽、小华和小明的家,他从邮局出发,向东走了3千米到小丽的家,继续走了1千米到了小华的家,然后向西走了9千米到了小明家,最后回到邮局。(1)以邮局为原点,规定向东方向为正,用1个单位长表示1千米,请你在数轴上表示出小丽、小华、小明家的位置.(2)小明家距小丽家多远?(3)该职工小王一共走了多少路程?16、小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)、在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?17.(10分)某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?18.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)520136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?419.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8+1-1.20-0.7+0.6-0.4-0.1问:(1)这个小组男生的达标率为多少?(达标人数达标率总人数)(2)这个小组男生的平均成绩是多少秒?21.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图1-8并思考,完成下列各题:-5-4-3-2-102345678531(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?22、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。(4分)23、已知a、b互为相反数,m、n互为倒数,x绝对值为2,求xnmcbmn2的值24.(8分)数轴上A,B,C,D四点表示的有理数分别为1,3,-5,-8(1).计算以下各点之间的距离:①A、B两点,②B、C两点,③C、D两点,(2).若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.525、观察数表.根据其中的规律,在数表中的方框内填入适当的数.26.观察下列顺序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;……猜想第n个等式(n为正整数)应为_________________________-___.27、先阅读,再解题:因为,2112113213121,4314131,……所以)501491(...)4131()3121()211(50491...431321211501491...413131212115011.5049参照上述解法计算:51491...75153131128.请先阅读下列一组内容,然后解答问题:因为:111111111111,,12223233434910910所以:11111223349106111111233491011111123349101911010问题:计算:①111112233420042005;②1111133557495129.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001nn,这里“”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501n(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为101nn3.通过对上以材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________________;(2)计算51n(n2-1)=________________.(填写最后的计算结果)30、有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为an。若a1=21,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。试计算:a2=______,a3=____,a4=_____,a5=______。这排数有什么规律吗?由你发现的规律,请计算a2004是多少?6分31、计算:1+2-3—4+5+6—7—8+9+10—11—12+…+2005+2006-2007—2008
本文标题:有理数应用题
链接地址:https://www.777doc.com/doc-7209224 .html