您好,欢迎访问三七文档
《智能控制》结课论文测控12-1王春旭1267112103基于MATLAB的温度模糊控制一、温度模糊控制本文对中央空调系统的模糊控制器的设计做了比较详尽的论述,并结合MATLAB仿真软件对控制系统做了仿真,得到其响应曲线,并与PID控制方法进行比较,从而得出模糊控制器在中央空调系统温度自动控制中具有很高的应用价值,但由于温度控制具有升温单向性、大惯性、大滞后等特点,很难用数学方法建立精确的模型,因此用传统的控制理论和方法很难达到好的控制效果。鉴于此,本文拟以模糊控制为基础的温度智能控制系统,采用人工智能中的模糊控制技术,用模糊控制器代替传统的PID控制器,以闭环控制方式实现对温度的自动控制。二、方案设计利用MATLAB的模糊控制箱及Simulink内含的功能元件,建立温度箱温度模糊控制器及其系统的模型。1.建立模糊控制器采用温度偏差,即实际测量温度与给定温度之差e及偏差变化率ed作为模糊控制器的输入变量,输出p为“PWM波(脉冲宽度调制)”控制发热电阻的功率,来调节温度箱内温度的升降,形成典型的双输入单输出二维模糊控制器。运用MATLAB中的FIS编辑器,建立温度箱的Mamdani型模糊控制器,如图1所示。温度偏差e、温度偏差变化率ed和输出变量lZ的语言变量E,Ed,P都选择为{NB,NM,NS,Z,PS,PM,PB},其中P和N分别表示正与负,B,M,s分别表示大、中、小,z表示0。图1模糊控制器模型2.建立控制决策及隶属函数模糊控制决策及解模糊方法采用系统默认值,即极大极小合成运算与重心法解模糊。由模糊控制决策公式可求得输出变量的模糊集合为P=(E×Ed)×R本文都采用三角隶属函数,各变量的隶属函数如图2所示。其中,图2(a)为E和Ed,隶属函数图,E和Ed的量化论域为[-6,6];图2(b)为P隶属函数图,EC的量化论域为[-6,6]。不同的系统,其模糊集的隶属函数是不同的,要根据实际情况和实践经验而定。(a)E和Ed隶属函数(b)P隶属函数图图2隶属函数图3.建立模糊控制规则模糊控制规则如表1所示。建立该系统模糊控制规则的基本原则为:当温度偏差较大时,选择控制量以尽快消除误差为主;当温度偏差较小时,选择控制量要注意防止超调,以系统的稳定性为主要出发点。EDNBNMNSZPSPMPBNBNBNBNBNBNMNSZNMNBNBNMNMNSZPSNSNBNMNMNSZPSPMZNBNMNSZPSPMPBPSNMNSZPSPMPMPBPMNSZPSPMPMPBPBPBZPSPMPBPBPBPB表1模糊控制规则表.将模糊控制规则表中的规则逐一输入模糊控制规则界面。如图3所示:图3三、进行matlab的仿真为了验证所设计的温度模糊控制器的性能,并在仿真过程中及时调整模糊控制器的控制规则和各项参数,笔者利用Matlab软件进行仿真研究.本次设计利用FuzzyLogicToolbox和Simulink图形化工具平台,对温度控制系统进行优化模糊控制设计与仿真的。在进行温度控制系统的仿真之前,必须建立被控对象的数学模型.通常采用阶跃响应法来获得对象的特性.温度箱温度控制系统的传递函数数学模型,近似等效为带纯滞后的一阶对象。G(S)=Ku(e-ts)/85s+1在进行模糊控制仿真时,首先利用Matlab的模糊逻辑工具箱建立温度箱模糊控制器,然后在Simulink环境下把模糊控制器加载进相应模块,进行仿真.量化因子Kp=2,Kd=1,Ku=21,模糊控制器的封装以及阶跃响应曲线分别如图6,图7所示.图6系统仿真模型图图7阶跃响应曲线由图7可知,采用模糊控制不仅调节时间短,系统响应加快,而且在超调量和抗干扰能力方面均优于PID控制器,具有更好的动态性能和稳态精度.四、结论总结随着科学技术的发展,智能控制技术必会日趋完善,并且能够在更多的领域上应用。此设计是基于MATLAB的模糊控制系统,通过调试及仿真,可以初步得出温度控制的关系原理,从而为在实际应用上提供一个参考,但是在实际应用中还应考虑实际的影响因素,例如环境对控制系统的影响、人为因素对控制系统的影响等。面对实际问题时应具体问题具体分析。有不足的地方再加以改进。参考文献:1、韩力群.智能控制理论及应用.机械工业出版社,2008邱黎辉,阙沛文,毛义梅2、模糊PID控制在中央空调系统中的应用研究,计算机测量与控制.2004,(1):57-53、李金川,郑智慧空调制冷自动控制系统运行于管理,北京:中国建材工业出版社,2002年6月。
本文标题:智能控制结课大作业
链接地址:https://www.777doc.com/doc-7216488 .html