您好,欢迎访问三七文档
机器人引论第8章仿生机器人第8章仿生机器人8.1仿生机器人的特点8.2仿生机器人的研究概述8.3仿生机器鱼8.4四足仿生机器人8.1仿生机器人的特点仿生机器人是近十几年来出现的新型机器人。它的思想来源于仿生学,其目的是研制出具有动物某些特征的机器人。仿生机器人是仿生学的先进技术与机器人领域的各种应用的最佳结合。仿生机器人是机器人发展的最高阶段,它既是机器人研究的最初目的,也是机器人发展的最终目标之一。机器人分为第零代原始机器人,第一代示教(工业)机器人,第二代感知(遥控)机器人,第三代智能机器人和第四代仿生机器人。8.2仿生机器人的研究慨述8.2.1研究现状1飞行机器人飞行机器人即具有自主导航能力的无人驾驶飞行器。其飞行原理分为:固定翼飞行、旋翼飞行和扑翼飞行。固定翼技术已经成熟,但其翼展在200mm以下时不足以产生足够的升力。目前国内外广泛关注的微型飞行器侧重于扑翼机的研究。它模仿鸟类或昆虫的扑翼飞行原理,故被称为“人工昆虫”。目前对飞行运动进行仿生研究的国家主要是美国,剑桥大学和多伦多大学也在开展相关方面的研究工作。图2是美国加州大学伯克利分校的研究小组用了4年的时间,基于仿生学原理制造出的世界上第一只能飞翔的“机器苍蝇”。机械苍蝇2陆地仿生机器人机械蜘蛛:美国宇航局(NASA)喷气推进实验室于2002年12月研制成功的机器蜘蛛Spider-pot,装有一对可以用来探测障碍的天线,且拥有异常灵活的腿。它们能跨越障碍,攀登岩石,探访靠轮子滚动前进的机器人无法抵达的区域。壁虎机器人:目前世界上关于仿壁虎机器人的研制还处在初步阶段,真正实现类似壁虎的全空间无障碍运动的机器人还需要时间。机械蜘蛛壁虎机器人:加州大学伯克利分校RobertFull等人研制的能在干燥环境下实现壁面爬行的仿壁虎机器人的样机3水下仿生机器人水下机器人又称为水下无人潜器,分为遥控、半自治及自治型。水下机器人是典型的军民两用技术,不仅可用于海上资源的勘探和开发,而且在海战中也有不可替代的作用。鱼类的高效、快速、机动灵活的水下推进方式吸引了国内外的科学家们从事仿生机器鱼的研究。美国、日本等国的科学家们研制出了各种类型的仿生机器鱼实验平台和原理样机。国内的中科院自动化研究所和北京航空航天大学等单位已研制了机器鱼样机。基于鲹科模型的“游龙”系列机械鱼8.2.2仿生机器人关键技术问题1建模问题仿生机器人的运动具有高度的灵活性和适应性,其一般都是冗余度或超冗余度机器人,结构复杂。运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。2控制优化问题机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到“整体大于组分之和”,同时要研究高效优化的控制算法才能使系统具有实时处理能力。3信息融合问题信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。4机构设计问题生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。5微传感和微驱动问题微型仿生机器人的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题。如动力源、驱动方式、传感集成控制以及同外界的通讯等。8.2.3仿生机器人发展趋势特种仿生机器人微型化仿生机器人仿形仿生机器人生物仿生机器人8.3仿生机器鱼8.3.1鱼类推进理论1鱼类形态描述下图给出了常用的描述鱼体形态的术语。鱼体通常为纺锤形体或扁平形流线体,可以极大的减小形体阻力。鳍对大多数鱼类的游动能力起到决定性的作用,一般来讲,尾鳍提供前向游动的主要动力,中间鳍起平衡作用,而对鳍主要起到转弯和平衡的作用。2鱼类游动方式分类喷射式:乌贼、鱿鱼、水母等依照身体躯干的特殊构造,它们由身体内部的特殊部位向后挤压水流产生后向推力,利用动量守恒原理推动身体前进。BCF(Bodyand/orCaudalFin)推进方式:这种推进方式也被称作尾鳍摆动式。又可分为鳗行式(Anguilliform),鳟行式(Carangiform)和鲉行式(Thunniform)。它们的显著特点是主要利用鱼的身体后半段和尾鳍协调摆动前进。MPF(Medianand/orPairedFin)推进方式:它主要是利用除了尾鳍之外的一些鱼鳍划动向前推进,如胸鳍、腹鳍、臀鳍、背鳍等。这类鱼较少,大多数的鱼类只是利用这些鳍来保持平衡和控制转向。BCF推进方式(a)鳗行式(b)鳟行式(c)鲉行式(c)鲉行式:又称鲹科结合新月形尾鳍模式,鱼类有灿鱼、鳍鱼、马林鱼等,常有大展弦比的尾鳍,在快速运动中最为高效。海洋中游速最高的鱼类大都采用这种游动方式。(a)鳗行式:又称身体波动式,如鳗鱼、水蛇等,它们的游动犹如正弦波形的前进一样,把身体当作推进器,用从头到尾波动身体来游动,其前进单位距离所需推力最小。(b)鳟行式:又称鳍科模式,如蹲鱼、鲜鱼等,是最常见的方式,在速度、加速度方面和可操控性上有最好的平衡。据统计,大约只有15%的鱼类采用BCF推进方式以外的其他方式推进。由于MPF推进方式速度慢、效率低,因此我们把研究的重点放在BCF推进方式中在速度、加速度和可操控性上有最好的平衡的鲹科模式。3鲹科类推进机理在有流速流场里的非流线型物体,会沿来流的方向在其后面形成一连串交错而反向的尾涡,即卡门涡街。通过观察,人们发现BCF推进方式中摆动尾鳍后同样有尾涡串的存在,但和卡门涡街恰好相反,称为反卡门涡街。反卡门涡街形成一种类似喷流的流动,这种喷流平行于鱼体前进的方向,产生推力。鱼类之所以能造成如此高效率的推进力量,是由于来自尾鳍整合背后涡流的方式。这些涡流的强度随着尾鳍的力量而增加,但是它们的旋转轴方向一直都是垂直于鱼体前进的方向,也就使形成有效推力的喷流平行于鱼体前进的方向。一个摆动周期产生反卡门涡街的过程(a)尾鳍先以摆动造成一个大涡流;(b)迅速的顶端摆动造成一个相反方向的涡流;(c)下摆之后的尾鳍使两个涡流相遇;(d)相供的两个涡流形成一柱强力的向后喷流,并相互减弱其涡流强度。表示尾流反卡门涡街的参数是斯特劳哈尔数St(StrouhalNumber)。对于BCF推进方式,斯特劳哈尔数定义为:/tfAASUUf式中f——尾鳍摆动频率,Hz;A——尾流宽度,通常以尾鳍摆幅近似表示;U——平均游动速度;由于鱼尾在一个拍动周期里产生一对漩涡,所以/Uf,表示了一个拍动周期里涡街稠密的程度。鱼游得越快,涡街越稀疏。通过试验,Triantafyllou等指出,当0.25St0.40时,将会达到较高效率。4鲹科类模式鱼体波模型建立及分析根据对鲹科模式鱼类游动的仿生研究及图像分析,得到的鱼体波特征为一波幅逐渐加大、由头部至尾鳍传播的行波。鱼体波曲线可通过鱼体波波幅包络线与正弦曲线的合成来进行数学描述:212(,)()sin()bodyyxtcxcxkxt式中(,)bodyyxt——身体横向位移;1c——尾流宽度,通常以尾鳍摆幅近似表示;2c——平均游动速度;k——线性波幅包络线系数;——二次波幅包络线系数。鲹科模式鱼类在推进游动过程中,身体长度上鱼体波波数,即鱼体波波长(:鱼体长),鱼体的前部刚度很大,几乎保持刚性,身体波幅限制在身体的后1/3部分,并且在末端达到最大值。鲹科模式鱼类在游动过程中通过尾鳍的运动产生超过90%的推进力,尾鳍的运动是研究的关键。尾鳍运动可视为平动运动和摆动运动的合成,鱼体波使尾鳍产生平动运动,此运动主要产生击水动作;尾鳍绕关节旋转产生摆动运动,此运动主要为尾鳍的击水动作提供合适的攻角。基于以上分析,可将鱼体的前部简化为刚体,由后颈部的摆动运动代替鱼体波产生尾鳍的平动运动,这也有助于在身体的前部安装驱动、控制系统以及检测传感器等;后颈部与尾鳍相连的部位简化为一个旋转的关节,尾鳍则简化为刚性的平板。尾鳍在特定的旋转和平动运动情况下产生最佳的推进性能。1k1BLBL8.3.2仿生机器鱼的设计机器鱼是一个复杂的机器人系统,包括机械传动和机电控制两大部分,其中机械系统犹如整个系统的躯体,控制系统犹如整个系统的大脑和神经中枢。因此,它必须具有运动灵活、传动精密的机械本体,结构合理、高效运作的控制系统,以及运算高速、工作可靠的硬件平台。1几种典型机械鱼机构分析UPF-2001机构分析UPF-2001尾部机构PF-600机构分析PF-600尾部机构VCUUV机构分析VCUUV内部结构图(ElectronicsAssembly:电子集成单元;HydraulicPowerUnit:水电单元;Free-FloodedTail:无血尾巴;TailExostructure:尾巴外壳承载结构;PressureHull:压力船身;Batteries:电池;MainBallast:主压载物;DrivenLinkAssembly:驱动连接集成单元)2机械鱼机械结构设计尾部机械结构设计以两个自由度的尾部推进机构为例进行具体介绍:鱼体外形设计成纺锤体形,其纵轴与铅垂轴之比取4左右,并且体后很快收敛成尾柄,这样的外形可以保持边界层的层流状态,同时不致引起流动分离。尾部机构为平行四连杆机构串连的形式,这样,尾鳍的运动就由两转动关节的运动合成,两个关节运动满足一定的相位跟随关系,产生推力,推进鱼体运动。图中7为刚性的背鳍,设计目的是为了增加鱼体的稳定程度,不产生推力作用。以上结构的优点是:自由度较少,运动控制系统简单,易于实现精确控制;运动对称性好,能够较好模拟蜂科模式鱼类的运动形态;机构简单,传动环节较少,传动线路短,效率高;机构紧凑,易于水下密封,并能保证运动精度1.鱼体蒙皮2.上托架3.负载腔4.12.18.鱼体填充物5.齿轮6.尾柄关节7.背鳍8.力矩传感器9.尾鳍关节10.尾鳍11.尾鳍伺服舵机13.直流电机14,光电码盘15.电位计16.胸鳍伺服电机17.电源19.配重20.密封环21.胸鳍22.主体托架机器鱼本体机构图胸鳍机械结构设计鲹科模式鱼类胸鳍的运动一般包含三个自由度,这样才能保证胸鳍产生三维的力,机器鱼只需进行功能仿生,有以下几种方式实现上浮、下潜运动:在鱼体内内置水箱和泵,通过改变自身重力来改变在水中的浮力;通过胸鳍的上下摆动产生升力;改变尾鳍矢量推进方向,如将尾鳍旋转90度,则原来的转弯运动转化为上浮运动;改变鱼在水中的姿态,即改变机器鱼重心位置,使鱼体与水平面成一定角度,在推进的同时实现了上浮运动。为了实现机器鱼的上浮和下潜运动,设计具有单自由度的翼形胸鳍,采用第二种形式,由伺服电机通过平行四连杆驱动胸鳍,通过改变击水角度实现上浮、下潜运动。8.3.3仿生机器鱼的运动控制机器鱼推进系统是一个二自由度的系统,运动规律可参数化表示,我们将尾部两关节的运动抽象为以下数学模型:11max1max22max2max()sin2(1)()sin(2)(1)aiaaiaAtKAftKKAAtKAftKKA式中aK——振幅系数,实际振幅与最大振幅的比值;iK——偏斜系数,描述尾柄和尾鳍摆动对称轴与鱼体轴的偏斜程度;;2c——平均游动速度;1maxA——尾柄与鱼体轴之间摆动振幅;;2maxA——一尾鳍与尾柄之间摆动振幅;f——摆动频率;——尾鳍与尾柄之间的相位差;1直线运动2转向运动机器鱼具有三种基本的转弯模式:设置0,0aiKK,尾柄和尾鳍以鱼体轴为对称轴摆动,在一个摆动周期内,两侧偏转力互相抵消,鱼体沿直线运动。改变f,1maxA,2maxA等参数以获得不同的游动速度,实现机器鱼的启动/加速运动。(a)游动前进转弯:机器鱼在保持持续推进时进行转弯。转弯过程中,机器鱼摆动对称轴偏向于鱼体的
本文标题:仿生机器人课件
链接地址:https://www.777doc.com/doc-7228385 .html