您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第5讲角含半角模型(解析版)
-1-中考数学几何模型5:角含半角模型TH名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..-2-任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小-3-典题探究启迪思维探究重点例题1.如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF的长为4.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=5,CB=4,∴BE=3,∴AE=1,设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,∴CF===4,故答案为:4.变式练习1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,-4-∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠FAG=∠DAE,∴∠FAG+∠FAB=∠EAD+∠FAB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE=S△ABG=××4=.例题2.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【解答】解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,-5-∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,变式练习2.(1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.【解答】解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=6,∴BM+CM+CN+DN=6,∴BC+CD=6,∴BC=CD=3,故答案为3.-6-(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN,∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE,∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)解:如图3,把△ABM绕点A逆时针旋转150°至△ADG,连接AN.作NH⊥AD于H,在AH上取一点K,使得∠NKH=30°在Rt△DHN中,∵∠NDH=60°DN=5(﹣1),∴DH=DN=,HN=DH=,在Rt△KNH中,KN=2HN=15﹣5,HK=HN=,∴AK=AH﹣HK=15﹣5,∴AK=KN,∴∠KAN=∠KNA,∵∠NKH=∠KAN+∠KNA,∴∠NAK=15°,∴∠MAN=75°=∠BAD,由(2)得,MN=BM+DN=10+5(﹣1)=5+5.例题3.如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.-7-变式练习3.如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4.如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.-8-【解答】解:(1)证明:延长MB到G,使BG=DN,连接AG.∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∴∠1+∠2=∠4+∠2=∠MAN=∠BAD.∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∴∠MAN=∠NAD+∠BAM=∠DAB,∴∠MAG=∠BAD,∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.达标检测领悟提升强化落实1.请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;-9-(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.【解答】解:(1)BM+DN=MN;(2)DN﹣BM=MN.理由如下:如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠FAD.∴∠MAB+∠BAF=∠FAD+∠BAF=90°,即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.∵AN=AN,∴△MAN≌△FAN.∴MN=FN,即MN=DN﹣DF=DN﹣BM;(3)∵正方形的边长为16,DN=4,∴CN=12.根据(1)可知,BM+DN=MN,设MN=x,则BM=x﹣4,∴CM=16﹣(x﹣4)=20﹣x.在Rt△CMN中,∵MN2=CM2+CN2,∴x2=(20﹣x)2+122.解得x=13.6.∴MN=13.6cm.2.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是EF=BE+FD.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.-10-(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,故答案为EF=BE+FD.(2)(1)中的结论EF=BE+FD仍然成立.理由:延长EB到点G,使BG=DF,连结AG
本文标题:第5讲角含半角模型(解析版)
链接地址:https://www.777doc.com/doc-7288095 .html