您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 显式算法与隐式算法的区别
显式算法与隐式算法的区别1、显式算法最大优点是有较好的稳定性。动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法、Newmark法和wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。因此需要的内存也比隐式算法要少。并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥。因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。为了减少相关误差,必须每步使用很小的增量。2、隐式算法隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这以过程需要占用相当数量的计算资源、磁盘空间和内存。该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。3、求解时间t使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比;应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比;因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本。所谓显式和隐式,是指求解方法的不同,即数学上的出发点不一样。并不是说显式只能求动力学问题,隐式只能求静力学问题,只是求解策略不通。显式求解是对时间进行差分,不存在迭代和收敛问题,最小时间步取决于最小单元的尺寸。过多和过小的时间步往往导致求解时间非常漫长,但总能给出一个计算结果。解题费用非常昂贵。因此在建模划分网格时要非常注意。隐式求解和时间无关,采用的是牛顿迭代法(线性问题就直接求解线性代数方程组),因此存在一个迭代收敛问题,不收敛就的不到结果。两者求解问题所耗时间的长短理论上无法比较。实际应用中一般感觉来说显式耗时多些。由于两者解题的出发点,所以一般来说显式用于求解和时间相关的动力学问题。隐式用来求解和时间无关的静力学问题。但也不是绝对的。比如,用隐式求解时,为了克服迭代不收敛,改用显式算,但是要多给点时间,这样虽然克服了不收敛的问题,但是求解的时间费用也是相当客观的。另外,隐式也可以求解动力学问题。牛顿迭代法设r是的根,选取作为r的初始近似值,过点做曲线的切线L,L的方程为,求出L与x轴交点的横坐标,称x1为r的一次近似值。过点做曲线的切线,并求该切线与x轴交点的横坐标,称为r的二次近似值。重复以上过程,得r的近似值序列,其中,称为r的次近似值,上式称为牛顿迭代公式。用牛顿迭代法解非线性方程,是把非线性方程线性化的一种近似方法。把在点的某邻域内展开成泰勒级数,取其线性部分(即泰勒展开的前两项),并令其等于0,即,以此作为非线性方程的近似方程,若,则其解为,这样,得到牛顿迭代法的一个迭代关系式:。已经证明,如果是连续的,并且待求的零点是孤立的,那么在零点周围存在一个区域,只要初始值位于这个邻近区域内,那么牛顿法必定收敛。并且,如果不为0,那么牛顿法将具有平方收敛的性能.粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。[1]军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是AB,BA交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B=A),然后A再前进占领新的位置,B再跟上,直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称为迭代法。迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代变量在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。二、建立迭代关系式所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。三、对迭代过程进行控制在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。
本文标题:显式算法与隐式算法的区别
链接地址:https://www.777doc.com/doc-7306477 .html