您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 数学建模最优组队问题
..《数学建模课程设计》报告课程设计题目:最佳组队问题摘要针对问题1,我们知道题目中六个指标对建模的影响显然是不同的,但是我们只能从定性的角度来分析哪些因素对建模能力素质影响较大。于是,我们建立出求加权平均成绩的函数模型1然后经过Excel计算排序之后,得到加权平均水平统计表,进行了人员的直接筛选。但这种方法是占很大主观因素的,也缺乏一定的公平性。针对问题2,我们运用层次分析法,依次求解出目标层(12名选拔出的学生)、准则层(7项评价水平)、方案层(18名学生)之间的权重,最终根据每位同学所占的权重大小来筛选出优秀的学生。针对问题3,我们首先确定出三人组队选拔的最低标准。每三个人的每项能力的最大值都必须大于设定的最低标准,这样三个人才准许组成一队,因为三个人作为一整体,决定他们的能力水平的是这三人每项能力的最高水平,而不是取决于每队的最低水平。所以每一组的能力由团队中在这方面最优的选手决定,所以在组队的过程中,每队的三名选手至少有两项能力在整体平均能力以上,根据这一原则以及综合水平尽可能高进行组队。然后通过计算机算法,对这一问题进行实现。关键字:层次分析法动态规划问题建模..一问题重述2014年美国大学生数学建模竞赛将于美国东部时间2014年2月6日晚上8点举行,任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题这是一个最实际的,而且首先需要解决的数学模型问题.现假设有18名队员准备参加竞赛,根据队员的能力和水平要选出12名优秀队员分别组成4个队,每个队3名队员去参加比赛,选拔队员主要考虑的条件分别为有关学科成绩(平均成绩)、智力水平(反映思维能力、分析问题能力和解决问题能力等)、动手能力(计算机的使用和其他方面实际操作能力)写作能力、外语能力、协作能力(团结协作能力)和其他特长.每个队员的基本条件量化后如下表所示,根据表中的数据建立数学模型,试回答如下三个问题:1)选择哪12名优秀队员参加竞赛?2)确定一个最佳的组队使竞赛技术水平最高;3)给出由12名队员组成4个队的组队方案,使整体竞赛技术水平最高,并给出每个队的竞赛技术水平。附表18名队员各种能力分值表..条件队员学科成绩(1)智力水平(2)动手能力(3)写作能力(4)外语水平(5)协作能力(6)其它特长(7)ABCDEFGHIJKLMNOPQR8.68.28.08.68.89.29.27.07.78.39.09.69.58.69.19.38.48.79.08.88.68.98.49.29.68.08.28.18.29.19.68.38.78.48.08.38.28.18.58.38.58.29.09.88.48.68.08.18.38.28.88.69.49.28.06.58.59.67.77.97.26.26.56.97.89.98.18.18.48.89.29.17.97.79.29.78.69.09.18.79.68.59.08.79.09.08.88.68.48.79.59.19.69.79.29.09.29.79.3.9.49.59.79.39.09.49.59.19.2628896965456755678..二模型假设(1)题目所给各项指标数据真实客观反映选手水平。(2)选拔过程中遵循确定标准公平,公正,公开。(3)各队竞赛水平由各个单项指标衡量,并取在这方面最突出的选手的水平作为整队竞赛水平。(4)每位学生的综合水平主要由各指标分数决定。..三符号说明iX依次为学习成绩、智力水平、动手能力、写作能力、其它特长的得分(i1,23,4,5,6,7,)iY每组成员中取每项成绩的最高分(i1,2,3,4,5,6,7)ib分别表示降低0.5,1,1.5,2分(1,2,3,4i)Pi对应的7项水平的权重。依次为0.250.21340.17860.14290.10710.07140.0357(i1,2,3,4,5,6,7)..四问题分析4.1问题1分析:针对问题1,从各个同学的综合水平进行考虑,对影响选拔队员的7个条件进行综合性比较,采用加权平均的方法4.2问题2分析根据常理,题目中7个指标对建模能力的影响显然是不同的,但是我们只能从定性的角度来分析哪些因素对建模能力素质影响较大,而没有一个具体的尺度确定某项指标在建模能力中究竟占多大比重。所以根据相关文献【1】采用层次分析法来确定各项指标在建模能力中所占多比重。4.2问题3分析:问题要求寻求各队整体竞赛水平最高的分队方法,首先应该给每一对的整体竞赛水平一个精确标准,根据经济学原理【2】贸易使每个人生活更好,经济在社会中总是从事自己最有比较优势的工作,即最擅长的工作。所以可以断言,在一个团队中每位参数选手都从事自己最擅长的工作,故团队某一方面竞赛水平(比如动手能力,写作能力)是由团队中在这方面最优性的选手决定,所以在组队的过程中,每队的三名选手至少有两项能力在整体平均能力以上,根据这一原则以及综合水平尽可能高进行组队。..五模型建立与求解5.1问题1模型与求解针对问题1要根据18名学生的基本情况,来选择12名学生参加竞赛。根据择优选取原则,需要排除6名能力较差一些的同学,选择12名能力较好的同学出来。首先对18名学生进行编号,从各个同学的综合水平进行考虑,对影响选拔队员的7个条件进行综合性比较,通过两个模型的建立求解,最终得出结论。5.1.1模型Ⅰ建立出求加权平均成绩的函数模型:12343217654327654321XXXXXXXY然后经过Excel计算排序之后,即可得如下加权平均水平统计表。表5.1队员学科成绩智力水平动手能力写作能力外语水平协作能力其它特长平均水平L9.69.18.19.98.79.769.05M9.59.68.38.199.378.95G9.29.697.29.19.298.946428571D8.68.98.39.69.79.788.928571429R8.78.39.29.18.79.288.771428571P9.38.48.68.88.69.568.732142857O9.18.78.88.48.89.458.703571429F9.29.28.27.99968.685714286Q8.489.49.28.49.178.607142857C88.68.58.59.29.688.532142857E8.88.48.57.78.69.298.517857143A8.698.287.99.568.425K98.287.899.558.371428571N8.68.38.28.19958.33571428..6J8.38.18.66.98.59.448.057142857I7.78.28.46.59.69.357.982142857H789.86.28.79.767.939285714B8.28.88.16.57.79.127.8571428575.1.2模型2在做一些比较和决策的时候,通常考虑的因素会涉及到很多方面,而有些因素的重要性,影响力,或优先程度往往难以量化,人的主观选择(根据客观实际情况看)会起着相当主要的作用,这就给用一般的数学方法解决问题带来本质上的困难。层次分析法是一种定性和定量相结合的,系统化,层次化的分析方法,它可以有效地处理这样一类问题的实用方法【1】。基于我们要考虑所选拔出的学生有较强的互补性,使他们能够更好的配合,我们采用层次分析模型。首先,我们将决策的问题分解为3个层次,最上层为目标层,即选拔的12名学生,最下层为方案层,为18名学生,中间层为准则层,有学习成绩,智力水平(反映思维能力、分析问题、解决问题的能力),动手能力(计算机的使用和其它方面的实际操作能力),写作能力,协作能力(相互协作能力)及其他特长,各层次之间的关系用相连的直线表示,如图一所示。图5-1为避免结果的不准确性和不全面性,给出非定性的易于让人接受的结果,我们进行如下做法:一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度,以减少性质不同的诸因素相互比较的困难,提高准确度[3]..在该问题中比较学习成绩,智力水平,动手能力,写作能力,外语水平,协作能力,其他特长7个准则在选拔学生这一目标中的重要性。每次取两个因素iX和jX,用ija表示iX和jX对上一层因素的影响之比,全部比较成果可用成对比较矩阵*X1(),0,jijnnijjiijiAaaaaX(1)表示。由于(1)式给出的ija的特点,A称为正互反矩阵。显然必有ija=1。如果用1X、……、7X依次表示学习成绩、智力水平、动手能力、写作能力、外语水平、协作能力、其他特长7个准则,我们进行26C次成对比较,运用MATLAB得到成对比较矩阵为A=1.00001.16671.40001.75002.33333.50007.00000.85711.00001.20001.50002.00003.00006.00000.71430.83331.00001.25001.66672.50005.00000.57140.16670.20001.00001.33332.00004.00000.42860.50000.60000.75001.00001.50003.00000.28570.33330.40000.50000.66671.00002.00000.14290.16670.20000.25000.33330.50001.0000我们求取对应于特征根n的,归一化的特征向量表示各个准则对上层目标的权重。(1)运用MATLAB得到特征值和特征向量如下所示:..(2)一致性检验由上面所求的特征根和特征向量可知,7阶正互反阵A的最大特征根是7.0000,此时λ=n,一致性指标1NCIN=0,故A为一致阵。(3)确定权向量对特征向量进行归一化即可得到权向量w,(0.25,0.2143,0.1786,0.1429,0.1071,0.0714,0.0357)w其中各项的元素即对应于7项准则所占有的比重。5.1.3问题1模型2的结论将18名学生的各项成绩做成18行7列的矩阵如下所示:E=8.60009.00008.20008.00007.90009.50006.00008.20008.80008.10006.50007.70009.10002.00008.00008.60008.50008.50009.20009.60008.00008.60008.90008.30009.60009.70009.70008.00008.80008.40008.50007.70008.60009.20009.00009.20009.20008.20007.90009.00009.00006.00009.20009.60009.00007.20009.10009.20009.00007.00008.00009.80006.20008.70009.70006.00007.70008.20008.40006.50009.60009.30005.00008.30008.10008.60006.90008.50009.40004.00009.00008.20008.00007.80009.00009.50005.00009.60009.10008.10009.90008.70009.70006.00009.50009.60008.30008.10009.00009.30007.00008.60008.30008.20008.10009.00009.00005.00009.10008.70008.80008.40008.80009.40005.00009.30008.40008.60008.80008.60009.50006.00008.40008.00009.40009.20008.40009.10007.00008.70008.30009.20009.10008.70009.20008.0000然后e*Tw即可得到由各位学生的平均水平组成的18行1列的矩阵。T=(8.41697.84928.
本文标题:数学建模最优组队问题
链接地址:https://www.777doc.com/doc-7331792 .html