您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20202021学年高二物理专题训练下电学与力学规律的综合应用pdf含解析
2020-2021学年高二物理:电学与力学规律的综合应用专题训练题组1有约束的带电粒子在电场中的运动(直杆或面约束)1.如图所示,A、B、O、C为在同一竖直平面内的四点,其中A、B、O沿同一竖直线,B、C同在以O为圆心的圆周(用虚线表示)上,沿AC方向固定有一光滑绝缘细杆L,在O点固定放置一带负电的小球.现有两个质量和电荷量都相同的带正电小球a、b均可视为点电荷(a、b之间的库仑力忽略不计),先将a放在细杆上,让其从A点由静止开始沿杆下滑,后使b从A点由静止开始沿竖直方向下落,则下列说法中正确的是()A.从A点到C点,小球a做匀加速运动B.小球a在C点的动能等于小球b在B点的动能C.从A点到C点,小球a的机械能先增加后减少,但机械能与电势能之和不变D.小球a从A点到C点电场力做的功大于小球b从A点到B点电场力做的功【答案】C【解析】从A到C小球a受到的作用力是变力,故不可能做匀加速运动,A错;B和C在同一个等势面上,小球a和b在B和C点的电势能相等,故B、D错;电场力对小球a先做正功后做负功,故小球a的机械能先增加后减少,小球a只有重力和电场力做功,机械能和电势能之和不变,故C正确.2.(多选)如图所示,长为L=0.5m、倾角为θ=37°的光滑绝缘斜面处于水平向右的匀强电场中,一带电荷量为+q,质量为m的小球(可视为质点),以初速度v0=2m/s恰能沿斜面匀速上滑,g取10m/s2,sin37°=0.6,cos37°=0.8,则下列说法中正确的是()A.小球在B点的电势能大于在A点的电势能B.水平匀强电场的电场强度为C.若电场强度加倍,小球运动的加速度大小为3m/s2D.若电场强度减半,小球运动到B点时的速度为初速度v0的一半【答案】BD【解析】在小球由A运动到B的过程中,重力做负功,电场力做正功,小球电势能减少,A错;由动能定理知qELcosθ-mgLsinθ=0,所以水平匀强电场的电场强度为,B对;电场强度加倍后,则有q·2Ecosθ-mgsinθ=ma,所以a=6m/s2,C错;电场强度减半后,则有mgsinθ-qcosθ=ma1,a1=3m/s2,由v-v2=2a1L代入数值得v=1m/s,D对.3.(多选)如图所示,质量为m的带电滑块沿绝缘斜面匀加速下滑,当滑至竖直向下的匀强电场区域时(滑块受到的电场力小于重力),滑块的运动状态可能()A.仍为匀加速下滑,加速度比原来的小B.仍为匀加速下滑,加速度比原来的大C.变成匀减速下滑,加速度和原来一样大D.仍为匀加速下滑,加速度和原来一样大【答案】AB【解析】设斜面倾角为θ,滑块在开始下滑的过程中,mgsinθ-μmgcosθ=ma,解得a=gsinθ-μgcosθ0,故sinθμcosθ.滑块可能带正电也可能带负电,当滑块带正电时,(mg+Eq)sinθ-μ(mg+Eq)cosθ=ma1,a1=g(sinθ-μcosθ)+(sinθ-μcosθ),可推出加速度变大;当滑块带负电时,(mg-Eq)sinθ-μ(mg-Eq)cosθ=ma2,a2=g(sinθ-μcosθ)-(sinθ-μcosθ),可推出加速度变小,选项A、B正确.4.(多选)如图所示,粗糙且绝缘的斜面体ABC在水平地面上始终静止.在斜面体AB边上靠近B点固定一点电荷,从A点无初速度释放带负电且电荷量保持不变的小物块(视为质点),运动到P点时速度恰为零.则小物块从A到P运动的过程()A.水平地面对斜面体没有静摩擦作用力B.小物块的电势能一直增大C.小物块所受到的合外力一直减小D.小物块损失的机械能大于增加的电势能【答案】BD【解析】对整体受力分析可知,带电物块在沿斜面运动过程中,受到库仑力、重力、垂直斜面的支持力、沿斜面向上的摩擦力,先做加速运动,后做减速运动,水平方向加速度大小先减小后增大,所以要受到地面的摩擦力,摩擦力大小先减小后反向增大,故A错误;由运动可知,B点电荷带负电,A也带负电荷,故A在下滑的过程中,库仑力做负功,故物块的电势能增大,故B正确;物块A先加速后减速,加速度大小先减小后增大,故受到的合力先减小后增大,故C错误;由能量守恒可知带电物块损失的机械能大于它增加的电势能,是因为克服摩擦力做了功,故D正确.5.(多选)如图所示,离地H高处有一个质量为m、带电量为+q的物体处于电场强度随时间变化规律为E=E0-kt(E0、k均为大于零的常数,电场水平向左为正方向)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知μqE0mg.t=0时,物体从墙上静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑后脱离墙面,此时速度大小为,物体最终落在地面上.则下列关于物体的运动说法正确的是()A.当物体沿墙壁下滑时,物体先加速再做匀速直线运动B.物体从脱离墙壁到落地之前的运动轨迹是一段直线C.物体克服摩擦力所做的功Wf=mgHD.物体与墙壁脱离的时刻为t=【答案】CD【解析】竖直方向上有mg-μqE=ma,随着电场强度E的减小,加速度a逐渐增大,当E=0时,加速度增大到重力加速度g,此后物块脱离墙面,故A错误;物体脱离墙面时的速度向下,之后所受合外力与初速度不在同一条直线上,所以运动轨迹为曲线,故B错误;物体从开始运动到脱离墙面电场力一直不做功,由动能定理得,mg-Wf=mv2,将v=代入解得Wf=mgH,故C正确;当物体与墙面脱离时电场强度为零,所以E=E0-kt=0,解得时间t=,故D正确.6.如图所示,A、B两物块用一根轻绳跨过定滑轮相连,其中A带负电,电荷量大小为q.A静止于斜面的光滑部分(斜面倾角为37°,其上部分光滑,下部分粗糙且足够长,粗糙部分的动摩擦因数为μ,上方有一个平行于斜面向下的匀强电场),轻绳拉直而无形变.不带电的B、C通过一根轻弹簧拴接在一起,且处于静止状态,弹簧劲度系数为k.B、C质量相等,均为m,A的质量为2m,不计滑轮的质量和摩擦,重力加速度为g.(1)电场强度E的大小为多少?(2)现突然将电场的方向改变180°,A开始运动起来,当C刚要离开地面时(此时B还没有运动到滑轮处,A刚要滑上斜面的粗糙部分),请求出此时B的速度大小;(3)若(2)问中A刚要滑上斜面的粗糙部分时,绳子断了,电场恰好再次反向,请问A再经多长时间停下来?【答案】(1)(2)(3)【解析】(1)分析物块A的受力,受到重力、支持力和电场力作用,根据平衡条件得,qE=2mgsin37°,解得,E==.(2)初态物块B静止,弹簧处于压缩状态,压缩量为x,由平衡条件得kx=mg,末态当物块C刚要离开地面时,弹簧处于伸长状态,伸长量为x′,由平衡条件得kx′=mg,则物块B上升2x,物块A沿斜面下降2x,初、末状态的弹性势能相等,物块A、B速度大小相等,根据动能定理得,-mg·2x+qE·2x+2mg·2xsin37°=×3mv2-0,解得物块B的速度大小v=.(3)物块A滑上斜面粗糙部分,做匀减速直线运动,列牛顿第二定律关系式,2mgsin37°-qE-2μmgcos37°=2ma,解得a=-μgcos37°=-μg,运动时间t==.7.如图所示,可视为质点的三物块A、B、C放在倾角为30°的固定斜面上,物块与斜面间的动摩擦因数μ=,A与B紧靠在一起,C紧靠在固定挡板上,三物块的质量分别为mA=0.60kg,mB=0.30kg,mC=0.50kg,其中A不带电,B、C均带正电,且qC=1.0×10-5C,开始时三个物块均能保持静止且与斜面间均无摩擦力作用,B、C间相距L=1.0m.现给A施加一平行于斜面向上的力F,使A在斜面上做加速度a=1.0m/s2的匀加速直线运动,假定斜面足够长.已知静电力常量k=9.0×109N·m2/C2,g=10m/s2.求:(1)B物块的带电量qB;(2)A、B运动多长距离后开始分离.【答案】(1)5.0×10-5C(2)0.5m【解析】(1)设B物块的带电量为qB,A、B、C处于静止状态时,C对B的库仑斥力F0=以A、B为研究对象,根据力的平衡有F0=(mA+mB)gsin30°联立解得qB=5.0×10-5C(2)给A施加力F后,A、B沿斜面向上做匀加速直线运动,C对B的库仑斥力逐渐减小,A、B之间的弹力也逐渐减小.设经过时间t,B、C间距离变为L′,A、B两者间弹力减小到零,此后两者分离.则t时刻C对B的库仑斥力为F0′=以B为研究对象,由牛顿第二定律有F0′-mBgsin30°-μmBgcos30°=mBa联立以上各式解得L′=1.5m则A、B分离时,A、B运动的距离ΔL=L′-L=0.5m题组2有约束的带电粒子在电场中的运动(圆轨道约束)8.(多选)如图所示,MPQO为有界的竖直向下的匀强电场,电场强度为E,ACB为光滑固定的半圆形轨道,圆轨道半径为R,AB为圆水平直径的两个端点,AC为圆弧.一个质量为m、电荷量为-q的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆轨道.不计空气阻力及一切能量损失,关于带电粒子的运动情况,下列说法正确的是()A.小球一定能从B点离开轨道B.小球在AC部分可能做匀速圆周运动C.若小球能从B点离开,上升的高度一定小于HD.小球到达C点的速度可能为零【答案】BC【解析】由于题中没有给出H与R、E的关系,所以小球不一定能从B点离开轨道,故A错误;若重力大小等于电场力,小球在AC部分做匀速圆周运动,故B正确.由于小球在AC部分运动时电场力做负功,所以若小球能从B点离开,上升的高度一定小于H,故C正确;若小球到达C点的速度为零,则电场力大于重力,则小球不可能沿半圆轨道运动,所以小球到达C点的速度不可能为零.故D错误.9.(多选)如图所示,光滑的水平轨道AB与半径为R的光滑的半圆形轨道BCD相切于B点,AB水平轨道部分存在水平向右的匀强电场,半圆形轨道在竖直平面内,B为最低点,D为最高点.一质量为m、带正电的小球从距B点x的位置在电场力的作用下由静止开始沿AB向右运动,恰能通过最高点,则()A.R越大,x越大B.R越大,小球经过B点后瞬间对轨道的压力越大C.m越大,x越小D.m与R同时增大,电场力做功增大【答案】AD【解析】小球在BCD部分做圆周运动,在D点,mg=m,小球由B到D的过程中有:-2mgR=mv-mv,解得vB=,R越大,小球经过B点时的速度越大,则x越大,选项A正确;在B点有:FN-mg=m,解得FN=6mg,与R无关,选项B错误;由Eqx=mv,知m、R越大,小球在B点的动能越大,则x越大,电场力做功越多,选项C错误,D正确.10.如图所示,半径为R的光滑圆环竖直置于场强为E的水平方向的匀强电场中,质量为m、带电荷量为+q的空心小球穿在环上,当小球从顶点A由静止开始下滑到与圆心O等高的位置B时,求小球对环的压力.【答案】2mg+3Eq,方向水平向右【解析】小球从A运动到B的过程中,重力做正功,电场力做正功,动能增加,由动能定理有mgR+EqR=mv2在B点小球受到重力mg、电场力F和环对小球的弹力F1三个力的作用,沿半径方向指向圆心的合力提供向心力,则F1-Eq=m联立以上两式可得F1=2mg+3Eq小球对环的作用力与环对小球的作用力为一对作用力与反作用力,两者等大反向,即小球对环的压力F1′=2mg+3Eq,方向水平向右.11.在电场强度为E=104N/C、方向水平向右的匀强电场中,用一根长L=1m的绝缘细杆(质量不计)固定一个质量为m=0.2kg、电荷量为q=5×10-6C带正电的小球,细杆可绕轴O在竖直平面内自由转动.现将杆从水平位置A轻轻释放,在小球运动到最低点B的过程中,电场力对小球做功多少?A、B两位置的电势差多少?小球的电势能如何变化?小球到达B点时的速度多大?(取g=10m/s2)【答案】0.05J104V减少4.5m/s【解析】①电场力做功W=qEL=5×10-6×104×1J=0.05J②UAB=EL=104×1V=104V③由于电场力做正功,所以电势能减少④由动能定理可知:qEL+mgL=mv代入数据解得,vB≈4.5m/s.12.如图所示,在竖直向下的匀强电场中有一
本文标题:20202021学年高二物理专题训练下电学与力学规律的综合应用pdf含解析
链接地址:https://www.777doc.com/doc-7332710 .html