您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 数据分析spss作业汇总
数据分析方法及软件应用(作业)题目:4、8、13、16题指导教师:学院:交通运输学院姓名:学号:4、在某化工生产中为了提高收率,选了三种不同浓度,四种不同温度做试验。在同一浓度与温度组合下各做两次试验,其收率数据如下面计算表所列。试在α=0.05显著性水平下分析(1)给出SPSS数据集的格式(列举前3个样本即可);(2)分析浓度对收率有无显著影响;(3)分析浓度、温度以及它们间的交互作用对收率有无显著影响。解答:(1)分别定义分组变量浓度、温度、收率,在变量视图与数据视图中输入表格数据,具体如下图。(2)思路:本问是研究一个控制变量即浓度的不同水平是否对观测变量收率产生了显著影响,因而应用单因素方差分析。假设:浓度对收率无显著影响。步骤:【分析-比较均值-单因素】,将收率选入到因变量列表中,将浓度选入到因子框中,确定。输出:變異數分析收率平方和df平均值平方F顯著性群組之間39.083219.5425.074.016在群組內80.875213.851總計119.95823显著性水平α为0.05,由于概率p值小于显著性水平α,则应拒绝原假设,认为浓度对收率有显著影响。(3)思路:本问首先是研究两个控制变量浓度及温度的不同水平对观测变量收率的独立影响,然后分析两个这控制变量的交互作用能否对收率产生显著影响,因而应该采用多因素方差分析。假设,H01:浓度对收率无显著影响;H02:温度对收率无显著影响;H03:浓度与温度的交互作用对收率无显著影响。步骤:【分析-一般线性模型-单变量】,把收率制定到因变量中,把浓度与温度制定到固定因子框中,确定。输出:主旨間效果檢定因變數:收率來源第III類平方和df平均值平方F顯著性修正的模型70.458a116.4051.553.230截距2667.04212667.042646.556.000浓度39.083219.5424.737.030温度13.79234.5971.114.382浓度*温度17.58362.931.710.648錯誤49.500124.125總計2787.00024校正後總數119.95823a.R平方=.587(調整的R平方=.209)第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是均方;第五列是F检验统计量的观测值;第六列是检验统计量的概率p值。可以看到观测变量收率的总变差为119.958,由浓度不同引起的变差是39.083,由温度不同引起的变差为13.792,由浓度和温度的交互作用引起的变差为17.583,由随机因素引起的变差为49.500。浓度,温度和浓度*温度的概率p值分别为0.030,0.382和0.648。浓度:显著性0.05说明拒绝原假设(浓度对收率无显著影响),证明浓度对收率有显著影响;温度:显著性>0.05说明不拒绝原假设(温度对收率无显著影响),证明温度对收率无显著影响;浓度与温度:显著性>0.05说明不拒绝原假设(浓度与温度的交互作用对收率无显著影响),证明温浓度与温度的交互作用对收率无显著影响。8、以高校科研研究数据为例:以课题总数X5为被解释变量,解释变量为投入人年数X2、投入科研事业费X4、专著数X6、获奖数X8;建立多元线性回归模型,分析它们之间的关系。解释变量采用逐步筛选策略,并做多重共线性、方差齐性和残差的自相关性检验。解答:思路:根据要求采用逐步筛选的解释变量筛选策略,利用回归分析方法建立多元线性回归模型,分析它们之间的关系,并且要求做多重共线性、方差齐性和残差的自相关性检验。(1)步骤:【分析-回归-线性】,X5选入因变量,X2、X4、X6、X8选入自变量,方法选择【逐步】。【统计量】勾选【估计】、【模型拟合度】、【共线性诊断】与【Durbin-Waston(U)】。【绘制(T)按钮】,将*ZRESID添加到Y(Y)框中,将*ZPRED添加到X2(X)框中,勾选【正态概率图】,【保存(S)】按钮。在预测值与残差中勾选【标准化】选项。选择菜单【分析→相关→双变量】将标准化预测值和标准化残差选入【变量】框,在相关系数中选择Spearman,各项完成后点击【确定】。输出:變數已輸入/已移除a模型變數已輸入變數已移除方法1投入人年数.逐步(準則:F-to-enter的機率=.050,F-to-remove的機率=.100)。a.應變數:课题总数模型摘要b模型RR平方調整後R平方標準偏斜度錯誤Durbin-Watson1.959a.919.917241.95821.747a.預測值:(常數),投入人年数b.應變數:课题总数表中变量为投入人年数,参考调整的判定系数,由于调整的判定系数(0.917)较接近于1,因此认为拟合优度较高,被解释变量可以被模型解释的部分较多,未能被解释的部分较少。方程DW检验值为1.747,残差存在一定的正自相关。變異數分析a模型平方和df平均值平方F顯著性1迴歸19379040.047119379040.047331.018.000b殘差1697769.9532958543.791總計21076810.00030a.應變數:课题总数b.預測值:(常數),投入人年数被解释变量的总离差平方和为21076810.00,回归平方和及均方分别为19379040.047和19379040.047,剩余平方和及均方分别为1697769.953和58543.791,𝑭检验统计量的观测值为331.018,对应的概率𝒑值近似为0。依据该表可进行回归方程的显著性检验。如果显著性水平𝜶为0.05,由于概率𝒑值小于显著性水平𝜶,应拒绝回归方程显著性检验的零假设,认为回归系数不为0,被解释变量与解释变量的线性关系是显著的,可建立线性模型。係數a模型非標準化係數標準化係數T顯著性共線性統計資料B標準錯誤Beta允差VIF1(常數)-94.52472.442-1.305.202投入人年数.492.027.95918.194.0001.0001.000a.應變數\:课题总数依据该表可以进行回归系数显著性检验,写出回归方程和检测多重共线性。可以看到,如果显著性水平𝜶为0.05,投入人年数变量的回归系数显著性t检验的概率p值小于显著性水平𝜶,因此拒绝零假设,认为其偏回归系数与0有显著差异,与被解释变量与解释变量的线性关系是显著的,应保留在方程中。同时从容忍度和方差膨胀因子看,解释变量与投入人年数多重共线性很弱,可以建立模型。最终回归方程为,课题总数=-94.524+0.492投入人年数。排除的變數a模型Beta入T顯著性偏相關共線性統計資料允差VIF允差下限1投入科研事业费(百元).152b1.528.138.278.2673.748.267专著数.023b.182.857.034.1885.308.188获奖数.030b.411.684.077.5421.846.542a.應變數:课题总数b.模型中的預測值:(常數),投入人年数该表展示回归方程的剔除变量,可以看到,如果显著性水平𝜶为0.05,表中三个变量的回归系数显著性t检验的概率p值大于显著性水平𝜶,因此不拒绝零假设,认为其偏回归系数与0无显著差异,与被解释变量与解释变量的线性关系是不显著的,不应保留在方程中。同时从容忍度和方差膨胀因子看,解释变量与三个解释变量多重共线性严重,在建立模型的时候应当被剔除。共線性診斷a模型維度特徵值條件指數變異數比例(常數)投入人年数111.8001.000.10.102.2003.001.90.90a.應變數:课题总数依据该表可进行多重共线性检测,从方差比例上看第二个变量可解释常量的90%,也可解释投入人年数的90%,一次认为这些变量存在多重共线性。条件指数都小于10,说明存在共线性较弱,低个变量特征值小于0.7,说明线性相关关系较弱。殘差統計資料a最小值最大值平均數標準偏差N預測值-57.6423246.986960.000803.721331殘差-466.2850509.6787.0000237.891431標準預測值-1.2662.845.0001.00031標準殘差-1.9272.106.000.98331a.應變數:课题总数数据点围绕基准线还存在一定的规律性,但标准化残差的非参数检验结果表明标准化残差与标准正态分布不存在显著差异,可以认为残差满足了线性模型的前提要求。随着标准化预测值的变化,残差点在0线周围随机分布,但残差的等方差性并不完全满足,方差似乎有增大的趋势。但计算残差与预测值的Spearman等级相关系数为-0.176,且检验并不显著,因此认为异方差现象并不明显。相關StandardizedPredictedValueStandardizedResidualSpearman的rhoStandardizedPredictedValue相關係數1.000-.176顯著性(雙尾)..344N3131StandardizedResidual相關係數-.1761.000顯著性(雙尾).344.N3131依据该表可以对标准化残差和标准化预测值的Spearman等级进行分析,可以看到,计算残差与预测值的相关性弱,认为异方差现象不明显。13、利用1950年~1990年的天津食品消费数据,分析这段时间内的人均生活费用年收入的变化情况。要求:数据进行对数变换后,运用Holt线性趋势平滑模型分析。(1)输出均方根误差和参数估计结果;(2)输出ACF和PACF图形并对其特征进行分析,是否满足白噪声序列的条件;(3)给出1991-1992的预测值,并输出拟合图。解答:思路:根据题意,先不进行序列图和自相关、偏自相关的观察和检验阶段处理。直接利用指数平滑模型中的Holt线性趋势模型对数据进行分析,同时输出均方根误差和参数估计误差,ACF和PACF图像判断是否满足白噪音序列的条件;最后然后对数据进行1991年、1992年做出预测,并用模型进行拟合。步骤:【分析-预测-创建模型】,将人均生活费年收入选入【因变量】中,将【方法】选为【指数平滑法】;点击【条件】,在【因变量转换】中选【自然对数】,在【模型类型】中【Holt线性趋势】,【继续】。【统计量】,在【拟合度量】中选择【平稳的R方、均方根误差】,在【个别模型的统计量】中选中【参数估计】,在【比较模型的统计量】中选中【拟合优度】,选中【显示预测值】,【确定】【图表】,在【单个模型图】中选择【序列、残差自相关函数、残差部分自相关函数】,在【每张图显示的内容】中现则【观察值、预测值、拟合值】。【选项】,在【预测阶段】选择第二个,在【日期】的【年】框中填入【1992】。输出:模型適合度適合度統計資料平均數SE最小值最大值百分位數5102550759095平穩R平方.221..221.221.221.221.221.221.221.221.221R平方.994..994.994.994.994.994.994.994.994.994RMSE28.179.28.17928.17928.17928.17928.17928.17928.17928.17928.179MAPE3.517.3.5173.5173.5173.5173.5173.5173.5173.5173.517MaxAPE12.495.12.49512.49512.49512.49512.49512.49512.49512.49512.495MAE17.146.17.14617.14617.14617.14617.14617.14617.14617.14617.146MaxAE82.911.82.91182.91182.91182.91182.91182.91182.91182.91182.911標準化BIC6.858.6.8586.8586.8586.8586.8586.8586.8586.8586.858模型統計資料模型預測變數數目模型適合度統計資料Ljung-BoxQ(18)離群值數目平穩R平方RMSE統計資料DF顯著性人均生活费年收入-模型_10.22128.17916.36016.4280
本文标题:数据分析spss作业汇总
链接地址:https://www.777doc.com/doc-7339210 .html