您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 体育竞赛类高考概率题
体育竞赛类高考概率题1、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是(A10.216(B)0.36(C)0.432(D)0.648【答案】D2、甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A.B.C.D.【答案】D3、某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率.(用数值作答)151284、甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表123sss,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差有A.312sssB.213sssC.123sssD.231sss【答案】B5、甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.解:记“甲第i次试跳成功”为事件iA,“乙第i次试跳成功”为事件iB,依题意得()0.7iPA,()0.6iPB,且iA,iB(123i,,)相互独立.(Ⅰ)“甲第三次试跳才成功”为事件123AAA,且三次试跳相互独立,123123()()()()0.30.30.70.063PAAAPAPAPA.答:甲第三次试跳才成功的概率为0.063.(Ⅱ)“甲、乙两人在第一次试跳中至少有一人成功”为事件C.解法一:111111CABABAB,且11AB,11AB,11AB彼此互斥,111111()()()()PCPABPABPAB12352334甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664111111()()()()()()PAPBPAPBPAPB0.70.40.30.60.70.60.88.解法二:11()1()()10.30.40.88PCPAPB.答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.(Ⅲ)设“甲在两次试跳中成功i次”为事件(012)iMi,,,“乙在两次试跳中成功i次”为事件(012)iNi,,,事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为1021MNMN,且10MN,21MN为互斥事件,所求的概率为10211021()()()PMNMNPMNPMN1021()()()()PMPNPMPN1221220.70.30.40.70.60.4CC0.06720.23520.3024答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为0.3024.6、甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).解:用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak)=23,P(Bk)=13,k=1,2,3,4,5.(1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)P(A3)P(A4)=232+13×232+23×13×232=5681.(2)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=59,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=29,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)·P(B4)=1081,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=881.故X的分布列为X2345P59291081881EX=2×59+3×29+4×1081+5×881=22481.7、李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与x的大小.(只需写出结论)解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=AB∪AB,A,B相互独立.根据投篮统计数据,P(A)=35,P(B)=25.故P(C)=P(AB)+P(AB)=35×35+25×25=1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX=x-.8、乒乓球台面被网分隔成甲乙两部分,如图14所示,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为12,在D上的概率为13;对落点在B上的来球,小明回球的落点在C上的概率为15,在D上的概率为35.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.图14解:(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=12,P(A1)=13,P(A0)=1-12-13=16;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=15,P(B1)=35,P(B0)=1-15-35=15.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)·P(B1)+P(A0)P(B3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.由题意,随机变量ξ可能的取值为0,1,2,3,4,6.(2)由事件的独立性和互斥性,得P(ξ=0)=P(A0B0)=16×15=130,P(ξ=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=13×15+16×35=16,P(ξ=2)=P(A1B1)=13×35=15,P(ξ=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=12×15+16×15=215,P(ξ=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=12×35+13×15=1130,P(ξ=6)=P(A3B3)=12×15=110.可得随机变量ξ的分布列为:ξ012346P13016152151130110所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.9、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)X表示前4局中乙当裁判的次数,求X的数学期望.10、甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.解:(Ⅰ)记“甲队以3:0胜利”为事件1A,“甲队以3:1胜利”为事件2A,“甲队以3:2胜利”为事件3A,由题意,各局比赛结果相互独立,故3128()()327PA,22232228()()(1)33327PAC,122342214()()(1)33227PAC所以,甲队以3:0,3:1,3:2胜利的概率分别是827,827,427;(Ⅱ)设“乙队以3:2胜利”为事件4A,由题意,各局比赛结果相互独立,所以122442214()(1)()(1)33227PAC由题意,随机变量X的所有可能的取值为0,1,2,3,,根据事件的互斥性得1212(0)()()()PXPAAPAPA1627,34(1)()27PXPA,44(2)()27PXPA,(3)PX1(0)PX(1)PX(2)PX327故X的分布列为X0123P1627427427327所以16443012327272727EX7911、甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响,求:(1)前三局比赛甲队领先的概率;(Ⅱ)本场比赛乙队以3:2取胜的概率.(精确到0.001)解析:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4(1)记“甲队胜三局”为事件A,“甲队胜二局”为事件B,则3223()0.60.216,()0.60.40.432PAPBC∴前三局比赛甲队领先的概率为P(A)+P(B)=0.648(2)若本场比赛乙队3:2取胜,则前四局双方应以2:2战平,且第五局乙队胜。所以,所求事件的概率为22240.40.60.40.138C12、现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次的概率;3423(Ⅱ)求该射手的总得分的分布列及数学期望.13、乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次XEX发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望。14、甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球
本文标题:体育竞赛类高考概率题
链接地址:https://www.777doc.com/doc-7339424 .html