您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年广东省中山一中中考数学模拟试卷含解析答案
2019年广东省中山一中中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)计算3×(﹣2)的结果是()A.5B.﹣5C.6D.﹣62.(3分)下面图形中,是轴对称图形的是()A.B.C.D.3.(3分)下列各点在反比例函数的图象上的是()A.(﹣1,﹣2)B.(﹣1,2)C.(﹣2,﹣1)D.(2,1)4.(3分)数据1、2、5、4、5、3、3、的中位数是()A.2B.5C.3D.45.(3分)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.86.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5B.2+a<2+bC.D.3a>3b7.(3分)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定8.(3分)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°9.(3分)如图,将一个含有45°角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上.若测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最长边的长是()A.2cmB.4cmC.2cmD.4cm10.(3分)把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:a2﹣4a=.12.(4分)若实数a、b满足|a+2|+=0,则=.13.(4分)关于x的一元二次方程(m+3)x2+4x+m2﹣9=0有一个解为0,则m=.14.(4分)已知一次函数y=x﹣b与反比例函数的图象,有一个交点的纵坐标是2,则b的值为.15.(4分)圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为m.16.(4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,….则M2016顶点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解分式方程:+3=18.(6分)先化简,再求值:,其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.19.(6分)从A、B、C、D四人中随机选择两人参加乒乓球比赛,请用树状图或列表法求下列事件发生的概率.(1)A参加比赛;(2)A、B都参加比赛.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,每个正方形都是边长为1个单位长度的正方形,△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)请在方格中确定位似中心O的位置,并以O为坐标原点,以网格线所在的直线为坐标轴建立平面直角坐标系.(2)△ABC与△A1B1C1的位似比.(3)在图中作出△ABC关于原点O成中心对称的图形△A2B2C2.21.(7分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:EO=DC;(2)若菱形ABCD的边长为10,∠EBA=60°,求:菱形ABCD的面积.22.(7分)永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)已知抛物线y=x2+bx+c的图象如图所示,它与x轴的一个交点的坐标为A(﹣1,0),与y轴的交点坐标为C(0,﹣3).(1)求抛物线的解析式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0?(3)在抛物线的对称轴上有一动点P,求PA+PB的值最小时的点P的坐标.24.(9分)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长交于BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)求证:MB=MC;(2)求证:直线PC是⊙O的切线;(3)若AB=9,BC=6,求PC的长.25.(9分)如图,在矩形ABCD中,AD=4,DC=3,对角线AC、BD相交于点O,动点P、Q分别从点C、A同时出发,运动速度均为1cm/s,点P沿C→O→B运动.到点B停止,点Q沿A→D→C运动,到点C停止.连接AP、AQ、PQ,设△APQ的面积为y(cm2)(这里规定:线段是面积为0的几何图形),点Q的运动时间为x(s).(1)填空:BO=cm;(2)当PQ∥CD时,求x的值;(3)当时,求y与x之间的函数关系式;(4)直接写出在整运动过程中,使AQ=PQ的所有x的值.2019年广东省中山一中中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)计算3×(﹣2)的结果是()A.5B.﹣5C.6D.﹣6【分析】根据有理数的乘法法则:两数相乘,同号得正,异号得负,再把绝对值相乘,即可得到结果.【解答】解:3×(﹣2),=﹣(3×2),=﹣6.故选:D.【点评】此题主要考查了有理数的乘法,牢记法则即可.2.(3分)下面图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)下列各点在反比例函数的图象上的是()A.(﹣1,﹣2)B.(﹣1,2)C.(﹣2,﹣1)D.(2,1)【分析】根据反比例函数的解析式是,可知xy=﹣2,判断各选项即可得出答案.【解答】解:∵反比例函数的解析式是,∴xy=﹣2,故只有点(﹣1,2)在该函数的图象上.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.4.(3分)数据1、2、5、4、5、3、3、的中位数是()A.2B.5C.3D.4【分析】先把这些数从小到大排列,再找出最中间的数即可得出答案.【解答】解:把这些数从小到大排列为:1、2、3、3、4、5、5,最中间的数是3,则中位数是3;故选:C.【点评】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.5.(3分)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106,故n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5B.2+a<2+bC.D.3a>3b【分析】以及等式的基本性质即可作出判断.【解答】解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选:D.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.(3分)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【解答】解:∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点评】本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.8.(3分)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【解答】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°﹣∠COB=40°.故选:A.【点评】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.9.(3分)如图,将一个含有45°角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上.若测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最长边的长是()A.2cmB.4cmC.2cmD.4cm【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【解答】解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板,∴AB=AC=4,∴BC2=AB2+AC2=42+42=32,∴BC=4,故选:D.【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.10.(3分)把两个相同的矩形按如图方式叠合起来,重叠部分为图中的阴影部分,已知AD=4,DC=3,则重叠部分的面积为()A.6B.C.D.【分析】根据勾股定理求出AC,继而求出CE,易证得△CEF∽△CAB,根据相似三角形的相似比等于对应高之比求出,求出S四边形ABEF=S△ABC,代入求出即可.【解答】解:∵在矩形ABCD中,AD=4,DC=3,∴在Rt△ADC中,AC==5,∴CF=AC﹣CF=5﹣4=1,由矩形的性质得:∠AEF=∠CBA=90°,∵∠FAE=∠CAB,∴△CEF∽△CAB,∴=()2=,∴S四边形ABEF=S△ABC=××3×4=,故选:D.【点评】此题考查了相似三角形的判定与性质、勾股定理以及矩形的性质.注意相
本文标题:2019年广东省中山一中中考数学模拟试卷含解析答案
链接地址:https://www.777doc.com/doc-7350801 .html