您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级数学上册第2章有理数及其运算29有理数的乘方教案新版北师大版
有理数的乘方(1)教学目标1.理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想。教学重难点【教学重点】有理数乘方的运算。【教学难点】有理数乘方运算的符号法则。教学过程(一)、从学生原有认知结构提出问题在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a(n是正整数)呢?在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明。(二)、讲授新课1.求n个相同因数的积的运算叫做乘方。2.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数.一般地,在an中,a取任意有理数,n取正整数。应当注意,乘方是一种运算,幂是乘方运算的结果.当an看作a的n次方的结果时,也可以读作a的n次幂。3.我们知道,乘方和加、减、乘、除一样,也是一种运算,an就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算。例1计算:教师指出:2就是21,指数1通常不写.让三个学生在黑板上计算。引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?(1)横向观察正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零。(2)纵向观察互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等。(3)任何一个数的偶次幂是什么数?任何一个数的偶次幂都是非负数。你能把上述的结论用数学符号语言表示吗?当a>0时,an>0(n是正整数);当a=0时,an=0(n是正整数)。(以上为有理数乘方运算的符号法则)a2n=(-a)2n(n是正整数);a2n-1=-(-a)2n-1(n是正整数);a2n≥0(a是有理数,n是正整数)。例2计算:(1)(-3)2,(-3)3,[-(-3)]5;(2)-32,-33,-(-3)5;让三个学生在黑板上计算.教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别。教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了。课堂练习计算:(2)(-1)2001,3×22,-42×(-4)2,-23÷(-2)3;(3)(-1)n-1.(三)、小结让学生回忆,做出小结:1.乘方的有关概念.2.乘方的符号法则.3.括号的作用。【练习设计】3.当a=-3,b=-5,c=4时,求下列各代数式的值:(1)(a+b)2;(2)a2-b2+c2;(3)(-a+b-c)2;(4)a2+2ab+b2.4.当a是负数时,判断下列各式是否成立。(1)a2=(-a)2;(2)a3=(-a)3;5*.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?6*.若(a+1)2+|b-2|=0,求a2000·b3的值。【板书设计】2.9有理数的乘方(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学反思1.数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力。教学中,既要注重逻辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养。因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标。2.数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近。在引入新课时,要尽可能使学生的学习方式与数学家的研究方式类似,不断进行推广。a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,an是学生通过类推得到的。推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果。一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析。在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯。3.把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学。始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上。例如,通过实际计算,让学生自己体会到负数与分数的乘方要加括号。4.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想。符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显。在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实。
本文标题:七年级数学上册第2章有理数及其运算29有理数的乘方教案新版北师大版
链接地址:https://www.777doc.com/doc-7389965 .html