您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020届高考数学理一轮复习讲义85空间中的平行关系
§8.5空间中的垂直关系最新考纲考情考向分析1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用、直线与平面所成角等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.直线与平面垂直图形条件结论判定a⊥b,b⊂α(b为α内的任意一条直线)a⊥αa⊥m,a⊥n,m、n⊂α,m∩n=Oa⊥αa∥b,a⊥αb⊥α性质a⊥α,b⊂αa⊥ba⊥α,b⊥αa∥b2.平面与平面垂直(1)平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直l⊂βl⊥α⇒α⊥β性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面α⊥βα∩β=al⊂βl⊥a⇒l⊥α概念方法微思考1.若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直.若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90°的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面.2.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直.在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行.由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(×)(2)垂直于同一个平面的两平面平行.(×)(3)直线a⊥α,b⊥α,则a∥b.(√)(4)若α⊥β,a⊥β,则a∥α.(×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.(√)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二教材改编2.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案D解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.∵PC⊥PA,PB⊥PC,PA∩PB=P,PA,PB⊂平面PAB,∴PC⊥平面PAB,又AB⊂平面PAB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,PO,PC⊂平面PGC,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.题组三易错自纠4.若l,m为两条不同的直线,α为平面,且l⊥α,则“m∥α”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直答案A解析因为DD1⊥平面ABCD,所以AC⊥DD1,又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1,因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC答案B解析由题意得BC⊥AC,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC.因为AC∩VA=A,所以BC⊥平面VAC.因为BC⊂平面VBC,所以平面VAC⊥平面VBC.故选B.题型一直线与平面垂直的判定与性质例1如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF=2时,证明:B1F⊥平面ADF.证明因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2=5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2=5.显然DF2+B1F2=B1D2,所以∠B1FD=90°.所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.思维升华证明线面垂直的常用方法及关键(1)证明线面垂直的常用方法:①判定定理;②垂直于平面的传递性;③面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质.跟踪训练1如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,则AB∥EF.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.题型二平面与平面垂直的判定与性质例2(2018·全国Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.(1)证明由已知可得,∠BAC=90°,即BA⊥AC.又BA⊥AD,AD∩AC=A,AD,AC⊂平面ACD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)解由已知可得,DC=CM=AB=3,DA=32.又BP=DQ=23DA,所以BP=22.如图,过点Q作QE⊥AC,垂足为E,则QE∥DC且QE=13DC.由已知及(1)可得,DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为VQ-ABP=13×S△ABP×QE=13×12×3×22sin45°×1=1.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.跟踪训练2(2018·锦州调研)如图,三棱锥P-ABC中,底面ABC是边长为2的正三角形,PA⊥PC,PB=2.(1)求证:平面PAC⊥平面ABC;(2)若PA=PC,求三棱锥P-ABC的体积.证明(1)如图,取AC的中点O,连接BO,PO,因为△ABC是边长为2的正三角形,所以BO⊥AC,BO=3.因为PA⊥PC,所以PO=12AC=1.因为PB=2,所以OP2+OB2=PB2,所以PO⊥OB.因为AC∩OP=O,AC,OP⊂平面PAC,所以BO⊥平面PAC.又OB⊂平面ABC,所以平面PAC⊥平面ABC.(2)解因为PA=PC,PA⊥PC,AC=2,所以PA=PC=2.由(1)知BO⊥平面PAC,所以VP-ABC=VB-APC=13S△PAC·BO=13×12×2×2×3=33.题型三垂直关系的综合应用命题点1直线与平面所成的角例3如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一动点.(1)证明:△PBC是直角三角形;(2)若PA=AB=2,且当直线PC与平面ABC所成角的正切值为2时,求直线AB与平面PBC所成角的正弦值.(1)证明∵AB是⊙O的直径,C是圆周上不同于A,B的一动点.∴BC⊥AC,∵PA⊥平面ABC,∴BC⊥PA,又PA∩AC=A,PA,AC⊂平面PAC,∴BC⊥平面PAC,∴BC⊥PC,∴△BPC是直角三角形.(2)解如图,过A作AH⊥PC于H,∵BC⊥平面PAC,∴BC⊥AH,又PC∩BC=C,PC,BC⊂平面PBC,∴AH⊥平面PBC,∴∠ABH是直线AB与平面PBC所成的角,∵PA⊥平面ABC,∴∠PCA即是PC与平面ABC所成的角,∵tan∠PCA=PAAC=2,又PA=2,∴AC=2,∴在Rt△PAC中,AH=PA·ACPA2+AC2=233,∴在Rt△ABH中,sin∠ABH=AHAB=2332=33,即直线AB与平面PBC所成角的正弦值为33.命题点2与垂直有关的探索性问题例4如图,直三棱柱ABC-A1B1C1中,D,E分别是棱BC,AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF.(1)证明连接CE交AD于O,连接OF.因为CE,AD为△ABC的中线,则O为△ABC的重心,故CFCC1=COCE=23,故OF∥C1E,因为OF⊂平面ADF,C1E⊄平面ADF,所以C1E∥平面ADF.(2)解当BM=1时,平面CAM⊥平面ADF.证明如下:因为AB=AC,AD⊂平面ABC,故AD⊥BC.在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,BB1⊂平面B1BCC1,故平面B1BCC1⊥平面ABC.又平面B1BCC1∩平面ABC=BC,AD⊂平面ABC,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,A
本文标题:2020届高考数学理一轮复习讲义85空间中的平行关系
链接地址:https://www.777doc.com/doc-7392950 .html