您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 5.1.1相交线导学案
5.1.1相交线(导学案)一、导学1.导入课题:(1)观察课本图5.1-1,并阅读有关内容,体会说明:图中“剪刀”可以看作:两条相交线。(2)那么,这样的两条直线的位置关系和形成的角就是我们本节课所要研究的内容。2.学习目标:(1)能说出相交线、邻补角、对顶角的意义以及对顶角的性质.(2)能够灵活运用这几个意义和性质解决相关问题.3.学习重、难点:重点:邻补角、对顶角的概念,对顶角的性质.难点:推出“对顶角相等”的性质.二、分层学习4.自学指导:(1)自学内容:P2至P3练习前的内容.(2)自学时间:5分钟.(3)自学要求:仔细阅读课文内容,图文比照;动手比划,联系实际作图.(4)自学参考提纲:①如图1,直线AB、CD相交于O点,形成四个角,∠1和∠2有怎样的位置关系?a.∠1和∠2有一条公共边OA,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.b.图1中,互为邻补角的还有∠2和∠3,∠3和∠4,∠4和∠1.c.图2的各图中,∠1和∠2是邻补角吗?为什么?答案:A.不是,没有公共边.B.不是,另一边不是互为反向延长线.C.是,有公共边,且另一边互为反向延长线.②图1中,∠1和∠3有怎样的位置关系?a.∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线.具有这种位置关系的两个角,互为对顶角,图中互为对顶角的还有∠2和∠4.b.图3的各图中,∠1和∠2是对顶角吗?为什么?答案:B、D所对应图中的∠1和∠2是对顶角.c.请分别画出图4中∠1的对顶角和∠2的邻补角.d.如图5,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是∠BOF,∠EOD的邻补角是∠FOD和∠COE.③a.在图1中,∠1与∠3有怎样的数量关系?答案:∠1=∠3b.在图1中,∠2与∠3有怎样的数量关系?你是怎样得到的?能用几何语言推理吗?答案:∠2+∠3=180°三、强化练习:(1)下列说法对不对?①邻补角可以看成是平角被过它顶点的一条射线分成的两个角.(√)②邻补角是互补的两个角,互补的两个角是邻补角.(×)③因为对顶角相等,所以相等的两个角是对顶角.(×)(2)课本P3“练习”.检测案一、基础巩固1.如图,直线c分别与直线a、b相交形成8个角,写出图中满足下列条件的角.(1)∠1的邻补角有∠2,∠4;(2)∠3的邻补角有∠2,∠4;(3)∠5的邻补角有∠6,∠8;(4)∠7的邻补角有∠6,∠8;(5)对顶角有∠1和∠3,∠2和∠4,∠5和∠7,∠6和∠8.第1题图第2题图2.如图所示:(1)邻补角有∠5和∠6,∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1;(2)对顶角有∠1和∠3,∠2和∠4.3.如图,直线AB、CD相交于点O,∠BOC的对顶角是∠AOD,邻补角是∠AOC和∠BOD.若∠AOC=80°,∠1=30°,则∠2的度数是50°.第3题图第4题图4.如图,直线AB、CD相交于点O,∠AOE=90°,如果∠1=20°,那么∠2=20°,∠3=70°,∠4=160°.二、综合运用5.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC,∠BOE的邻补角;(2)写出∠DOA,∠EOC的对顶角;(3)如果∠AOC=50°,求∠BOD,∠COB的度数.解:(1)∠AOC的邻补角:∠BOC,∠AOD;∠BOE的邻补角:∠AOE,∠BOF;(2)∠DOA的对顶角是∠BOC;∠EOC的对顶角是∠DOF;(3)因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=50°;因为∠COB是∠AOC的邻补角,所以∠COB=180°-∠AOC=130°.三、拓展延伸6.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:(1)因为OA平分∠EOC,所以∠AOC=12∠EOC=35°,又因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=35°;(2)因为∠EOC是∠EOD的邻补角,且∠EOC∶∠EOD=2∶3,所以∠EOC=72°,所以∠AOC=12∠EOC=36°,所以∠BOD=∠AOC=36°.
本文标题:5.1.1相交线导学案
链接地址:https://www.777doc.com/doc-7415599 .html