您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 广东省新兴县惠能中学2011届高三上学期第二次月考试题(数学文)
第1页共8页广东省新兴县惠能中学2011届高三上学期第二次月考试题(数学文)本试卷共4页,21小题,满分150分。考试用时l20分钟。参考公式:锥体的体积公式13VSh,其中S是锥体的底面积,h是锥体的高.[来一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中。只有一项是符合题目要求的。1.设集合A=2{|21},{|ln(1)}xxBxyx,则AB为()A.{|2}xxB.{|12}xxC.{|1}xxD.{|1}xx2.命题“0xR,3210xx”的否定是()A.xR,3210xx≤B.0xR,3210xxC.0xR,3210xxD.不存在xR,3210xx3.已知}{na为等差数列,且1247aa,03a,则公差d()A.2B.12C.-12D.24.函数xxxf1ln)(的零点个数为()A.0B.1C.2D.35.已知函数)(xf是定义在R上的奇函数,当0x时,()lnfxx,则)(ef()A.1B.1C.2D.26.下列曲线中离心率为62的是()A.22124xyB.22142xyC.22146xyD.221410xy7.在R上定义运算⊙:a⊙baabb2,则满足x⊙)2(x0的实数x的取值范围为()A.(0,2)B.(-1,2)C.),1()2,(D.(-2,1)第2页共8页正视图侧视图俯视图8.如下图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是()A.B.C.D.9.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.14B.4C.18D.810.函数2loglog21xyx的值域是()A.]1,(B.),3[C.]3,1[D.),3[]1,(二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.若将复数ii11表示为a+bi(a,b∈R,i是虚数单位)的形式,则a+b=.12.在ABC中,角ABC、、所对的边分别为abc、、,且222bcabc.则角A的大小为.13.若实数,xy满足不等式组00101yyxyx,则函数2zxy的最大值为.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,点)47,2(A到直线22)4sin(的距离为.15.(几何证明选讲选做题)已知⊙O的割线PAB交⊙O于BA,两点,割线PCD经过圆心,若3PA,4AB,5PO,则⊙O的半径为___________.OthhtOhtOOth第3页共8页三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知向量(cossin,sin)axxx,(cossin,2cos)bxxx,设()fxab.(1)求函数()fx的最小正周期.(2)当,44x时,求函数()fx的最大值及最小值.17.(本小题满分12分)先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数.(1)求点),(yxP在直线1xy上的概率;(2)求点),(yxP满足xy42的概率.18.(本小题满分14分)如图,一简单几何体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.(1)证明:平面ACD平面ADE;(2)若2AB,1BC,3tan2EAB,试求该几何体的体积V.第4页共8页19.(本小题满分14分)已知数列na是一个递增的等比数列,数列的前n的和为,nS且14,432Sa.(1)求na的通项公式;(2)若nnac2log,求数列11nncc的前n项之和nT.20.(本小题满分14分)已知曲线E上任意一点P到两个定点13,0F和23,0F的距离之和为4.(1)求曲线E的方程;(2)设过0,2的直线l与曲线E交于C、D两点,且0OCOD(O为坐标原点),求直线l的方程.21.(本小题满分14分)已知函数bxaxxxf233,其中ba,为实数.(1)若xf在1x处取得的极值为2,求ba,的值;(2)若xf在区间2,1上为减函数,且ab9,求a的取值范围.第5页共8页惠能中学2011届高三第二次月考试题数学(文科)参考答案及评分标准第一部分选择题(共50分)一、选择题:(每小题5分,共计50分)题号12345678910答案CACBABDBAD第二部分非选择题(共100分)二、填空题:(共4小题,每小题5分,共计20分)11.112.3600或13.214.2215.2(2)当44x,32444x,12sin(2)24x∴当2,428xx即时,()fx有最大值2;………10分当244x,即4x时,()fx有最小值1.………12分17.(本小题满分12分)解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为3666个.…………2分记“点),(yxP在直线1xy上”为事件A,A有5个基本事件:)}5,6(),4,5(),3,4(),2,3(),1,2{(A,…………5分第6页共8页.365)(AP…………6分(2)记“点),(yxP满足xy42”为事件B,则事件B有17个基本事件:当1x时,;1y当2x时,2,1y;…………7分当3x时,3,2,1y;当4x时,;3,2,1y…………9分当5x时,4,3,2,1y;当6x时,4,3,2,1y.………11分.3617)(BP…………12分18.(本小题满分14分)解:(1)证明:∵DC平面ABC,BC平面ABC∴DCBC.……………2分∵AB是圆O的直径∴BCAC且DCACC∴BC平面ADC.…………………………………………………4分∵四边形DCBE为平行四边形∴DE//BC∴DE平面ADC……………………………………………………6分又∵DE平面ADE∴平面ACD平面………………………7分(2)解法1:所求简单组合体的体积:EABCEADCVVV………9分∵2AB,1BC,3tan2EBEABAB∴3BE,223ACABBC…………………11分∴111362EADCADCVSDEACDCDE………12分111362EABCABCVSEBACBCEB………13分∴该简单几何体的体积1V……………………………14分解法2:将该简单组合体还原成一侧棱与底面垂直的三棱柱……8分如图∵2AB,1BC,3tan2EBEABAB∴3BE,223ACABBC………………………………10分∴ACBFDEEADFVVV=13ACBADCSDCSDE………………12分1126ACCBDCACDCDE=11313331126………………………………14分第7页共8页19.(本小题满分14分)解:(1)设首项为1a,公比为q………………………………………………………………1分由条件可得1443212aaaa,即14421111qaqaaqa,解之得2181qa或221qa………4分又数列为递增的,2q……5分nnnqaa211…………………………7分(2)nacnnn2loglog22……………………………………………………9分ncn1,111)1(111nnnnccnn……………………………………………………11分)111()3121()211(11113221nnccccccTnnn1111nnn……14分20.(本小题满分14分)解:(1)根据椭圆的定义,可知动点M的轨迹为椭圆…………………………1分其中2a,3c,则221bac.…………………………………3分所以动点M的轨迹方程为2214xy.…………………………………………5分(2)当直线l的斜率不存在时,不满足题意……………………………………6分当直线l的斜率存在时,设直线l的方程为2ykx,设11(,)Cxy,22(,)Dxy,∵0OCOD,∴12120xxyy…………………………………………8分∵112ykx,222ykx,∴21212122()4yykxxkxx.………………………………………9分∴21212(1)2()40kxxkxx.……①……………………10分由方程组221,42.xyykx得221416120kxkx.则1221614kxxk,1221214xxk,…………………………………11分第8页共8页代入①,得222121612401414kkkkk.即24k,解得,2k或2k……………………………………13分所以,直线l的方程是22yx或22yx.………………14分21.(本小题满分14分)解:(Ⅰ)由题设可知:01f且21f,………………2分即231063baba,解得.5,34ba………………5分(Ⅱ)aaxxbaxxxf9636322,………………6分又xf在2,1上为减函数,xf0对2,1x恒成立,………………7分即09632aaxx对2,1x恒成立.01f且'f02,………………11分即17310912120963aaaaaaa,a的取值范围是.1a………………14分
本文标题:广东省新兴县惠能中学2011届高三上学期第二次月考试题(数学文)
链接地址:https://www.777doc.com/doc-7421998 .html