您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】2014-2015年菏泽市定陶县九年级上期中数学试卷
2014-2015学年山东省菏泽市定陶县九年级(上)期中数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A.BC=2DEB.△ADE∽△ABCC.=D.S△ABC=3S△ADE2.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.75cm,115cmB.60cm,100cmC.85cm,125cmD.45cm,85cm3.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2④△ABC与△DEF的面积比为4:1.A.1B.2C.3D.44.如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是()A.40°B.50°C.60°D.75°5.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.8B.18C.16D.147.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:38.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π二、认真填写,试一试自己的身手(每小题3分,共18分)9.在相似三角形中,已知其中一个三角形三边的长是4,6,8.另一个三角形的最小边长是2,则另一个三角形的周长是.10.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面5米高的地方,那么物体所经过的路程为.11.△ABC三个顶点A(3,6)、B(6,2)、C(2,﹣1),以原点为位似中心,得到的位似图形△A′B′C′三个顶点分别为A′(1,2),B′(2,),C(,﹣),则△A′B′C′与△ABC的位似比是.12.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.13.一条弦把圆分为2:3两部分,那么这条弦所对的圆周角的度数为.14.如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则点B转过的路径长为(结果保留π).三、认真解答,一定要细心.(满分38分,要写出必要的计算推理、解答过程)15.计算:(1)sin45°•cos45°+tan60°•sin60•(2)sin30°﹣cos45°+tan230°+sin260°﹣cos260°.16.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G,写出图中两对相似三角形,并证明其中的一对.17.用反证法证明:在△ABC中,如果M、N分别是边AB、AC上的点,那么BN、CM不能互相平分.18.如图,A、B、C、D是⊙O上的四点,AB=DC,△ABC与△DCB全等吗?为什么?四、综合解答题(本题4小题,满分40分,要写出必要的计算、推理、解答过程)19.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.20.已知:如图,AB是⊙O的弦,∠OAB=45°,C是优弧AB上的一点,BD∥OA,交CA延长线于点D,连接BC.(1)求证:BD是⊙O的切线;(2)若AC=,∠CAB=75°,求⊙O的半径.21.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?22.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度;(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:≈1.414,≈1.73)2014-2015学年山东省菏泽市定陶县九年级(上)期中数学试卷参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A.BC=2DEB.△ADE∽△ABCC.=D.S△ABC=3S△ADE考点:三角形中位线定理;相似三角形的判定与性质.专题:压轴题.分析:根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出△ADE∽△ABC,进而可得出结论.解答:解:∵在△ABC中,点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴BC=2DE,故A正确;∵DE∥BC,∴△ADE∽△ABC,故B正确;∴=,故C正确;∵DE是△ABC的中位线,∴AD:BC=1:2,∴S△ABC=4S△ADE故D错误.故选D.点评:本题考查的是相似三角形的判定与性质及三角形的中位线定理,熟记以上知识是解答此题的关键.2.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.75cm,115cmB.60cm,100cmC.85cm,125cmD.45cm,85cm考点:相似三角形的性质.分析:根据题意两个三角形的相似比是15:23,可得周长比为15:23,计算出周长相差8份及每份的长,可得两三角形周长.解答:解:根据题意两个三角形的相似比是15:23,周长比就是15:23,大小周长相差8份,所以每份的周长是40÷8=5cm,所以两个三角形的周长分别为5×15=75cm,5×23=115cm.故选A.点评:本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2④△ABC与△DEF的面积比为4:1.A.1B.2C.3D.4考点:位似变换.专题:计算题.分析:根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.解答:解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.点评:此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.4.如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是()A.40°B.50°C.60°D.75°考点:圆周角定理.分析:首先连接AD,由直径所对的圆周角是直角,∠CAD=90°,又由圆周角定理,即可求得∠D的度数,继而求得答案.解答:解:连接AD,如图所示,∵CD是直径,∴∠CAD=90°,∵∠D=∠B=40°,∴∠ACD=90°﹣∠D=50°.故选B.点评:此题考查了圆周角定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.5.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形考点:特殊角的三角函数值.分析:根据特殊角的三角函数值和三角形的内角和定理求出角的度数,再进行判断.解答:解:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°﹣45°﹣60°=75°.∴△ABC为锐角三角形.故选A.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.6.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.8B.18C.16D.14考点:切线长定理.分析:由PA,PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理可得:PB=PA=8,CA=CE,DB=DE,继而可得△PCD的周长=PA+PB.解答:解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.故选:C.点评:此题考查了切线长定理.此题难度不大,注意从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.7.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:3考点:正多边形和圆.专题:压轴题.分析:从中心向边作垂线,构建直角三角形,通过解直角三角形可得.解答:解:设圆的半径是r,则多边形的半径是r,则内接正三角形的边长是2rsin60°=r,内接正方形的边长是2rsin45°=r,正六边形的边长是r,因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比为::1.故选B.点评:正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.8.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π考点:扇形面积的计算;多边形内角与外角.专题:压轴题.分析:圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积2公式计算即可.解答:解:图中五个扇形(阴影部分)的面积是=1.5π故选B.点评:解决本题的关键是把阴影部分当成一个扇形的面积来求,圆心角为五边形的内角和.二、认真填写,试一试自己的身手(每小题3分,共18分)9.在相似三角形中,已知其中一个三角形三边的长是4,6,8.另一个三角形的最小边长是2,则另一个三角形的周长是9.考点:相似三角形的性质.分析:由在相似三角形中,已知其中一个三角形三边的长是4,6,8.另一个三角形的最小边长是2,即可求得其中一个三角形的周长,由相似三角形的周长的比等于相似比,即可求得答案.解答:解:∵一个三角形三边的长是4,6,8,∴这个三角形的周长为:4+6+8=18,∵在相似三角形中,另一个三角形的最小边长是2,∴它们周长的比为:4:2=2:1,∴另一个三角形的周长是9.故答案为:9.点评:此题考查了相似三角形的性质.此题比较简单,注意熟记定理是解此题的关键.10.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面5米高的地方,那么物体所经过的路程为13m.考点:解直角三角形的应用-坡度坡角问题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2
本文标题:【解析版】2014-2015年菏泽市定陶县九年级上期中数学试卷
链接地址:https://www.777doc.com/doc-7495478 .html