您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 天津一中2017届九年级上第二次月考数学试卷含答案解析
2016-2017学年天津一中九年级(上)第二次月考数学试卷一、选择题(每题3分,共36分)1.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.2.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交B.内切C.外切D.外离3.下列事件:(1)沈阳每年都会刮风;(2)任意买一张电影票,座位号是奇数;(3)在如图的转盘中,转动转盘,转盘停止转动后,指针落在白色区域;(4)掷一枚均匀的硬币,结果是正面向上;(5)小红买彩票中奖.其中确定事件和不确定事件的个数分别是()A.3,2B.4,1C.2,3D.1,44.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>56.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.55°B.65°C.75°D.85°7.如图,O为坐标原点,边长为的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75°,使点B落在某抛物线的图象上,则该抛物线的解析式可能为()A.y=x2B.y=﹣x2C.y=﹣x2D.y=﹣3x28.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y39.如图,正六边形ABCDEF内接于圆O,圆O的半径为6,则这个正六边形的边心距OM和的长分别为()A.3、B.、πC.3、D.3、2π10.如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A.5B.4C.3D.211.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π﹣9B.9π﹣6C.9π﹣18D.9π﹣1212.如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,若S矩形MNPQ=y,则y与x的关系式为()A.y=6﹣x(0<x<12)B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12)D.y=x2+6x(0<x<12)二、填空题(每题3分,共18分)13.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.14.如图,在Rt△ABC中,∠C=90°,∠B=70°,△ABC的内切圆⊙O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为°.15.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.16.若二次函数y=x2+bx﹣5的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为.17.如图,在等边△ABC中,O为BC边上一点,E为AC边上一点,且∠ADE=6O°,BD=3,CE=2,则AB的长为.18.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(Ⅰ)求x的取值范围为;(Ⅱ)△ABC的最大面积为.三、解答题(7道题共66分)19.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(3,﹣1)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.20.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在1,2、3、4,5这五个数字中:(1)请用列表法或树状图表示出他们写和猜的所有情况;(2)如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率;(3)如果甲写的数字记为a,把乙猜的数字记为b,当他们写和猜的数字满足|a﹣b|≤1,则称他们“心有灵犀”,求他们“心有灵犀”的概率.21.某企业2014年盈利1500万元,2016年克服全球金融危机的不利影响,仍实现盈利2160万元.从2014年到2016年,如果该企业每年盈利的年增长率相同,求:(1)该企业2015年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2017年盈利多少万元?22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线.(2)若AF=1,OA=2,求PC的长.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)25.如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.2016-2017学年天津一中九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.2.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交B.内切C.外切D.外离【考点】圆与圆的位置关系;解一元二次方程-因式分解法.【分析】先解一元二次方程得到两圆半径分别为2和5,再计算两半径之和和两半径之差,然后把它们与圆心距进行大小比较,再根据圆和圆的位置关系进行判断.【解答】解:解方程x2﹣7x+10=0得x1=1,x2=3,即两圆半径分别为2和5,∵2+5=7,5﹣2=3,∴3<6<7,∴两圆的位置关系是相交.故答案为:相交.3.下列事件:(1)沈阳每年都会刮风;(2)任意买一张电影票,座位号是奇数;(3)在如图的转盘中,转动转盘,转盘停止转动后,指针落在白色区域;(4)掷一枚均匀的硬币,结果是正面向上;(5)小红买彩票中奖.其中确定事件和不确定事件的个数分别是()A.3,2B.4,1C.2,3D.1,4【考点】随机事件.【分析】确定事件是一定会发生或一定不会发生的事件;不确定事件是即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:(1)沈阳每年都会刮风,是确定事件;(2)任意买一张电影票,座位号是奇数,是不确定事件;(3)在如图的转盘中,转动转盘,转盘停止转动后,指针落在白色区域,是不确定事件;(4)掷一枚均匀的硬币,结果是正面向上,是不确定事件;(5)小红买彩票中奖,不确定事件.确定事件有1个,不确定事件有4个,故选D.4.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.6.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.55°B.65°C.75°D.85°【考点】旋转的性质;平行线的性质.【分析】先根据旋转的性质得到∠BAB′=∠CAC′=110°,AB=AB′,根据等腰三角形的性质易得∠AB′B=35°,再根据平行线的性质得出∠C′AB′=∠AB′B=35°,然后利用∠CAB′=∠CAC′﹣∠C′AB′进行计算即可得出答案.【解答】解:∵将△ABC绕点A按逆时针方向旋转l10°得到△AB′C′,∴∠BAB′=∠CAC′=110°,AB=AB′,∴∠AB′B==35°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=35°,∴∠CAB′=∠CAC′﹣∠C′AB′=110°﹣35°=75°.故选C.7.如图,O为坐标原点,边长为的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75°,使点B落在某抛物线的图象上,则该抛物线的解析式可能为()A.y=x2B.y=﹣x2C.y=﹣x2D.y=﹣3x2【考点】二次函数综合题.【分析】过点B向x轴引垂线,连接OB,可得OB的长度,进而得到点B的坐标,代入二次函数解析式即可求解.【解答】解:如图,作BE⊥x轴于点E,连接OB,∵正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∵∠AOB=45°,∴∠BOE=30°,∵OA=,∴OB=2,∴BE=OB=1,∴OE==,∴点B坐标为(,﹣1),代入y=ax2(a<0)得a=﹣,∴y=﹣x2,故选B.8.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.9.如图,正六边形ABCDEF内接于圆O,圆O的半径为6,则这个正六边形的边心距OM和的长分别为()A.3、B.、πC.3、D.3、2π【考点】正多边形和圆;弧长的计算.【分析】连接OC,OD,由正六边形ABCDEF可求出∠COD=60°,进而可求出∠COM=30°,根据30°角的锐角三角函数值即可求出边心距O
本文标题:天津一中2017届九年级上第二次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7500293 .html