您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 自贡市富顺2017届九年级上第一次月考数学试卷含答案解析
2016-2017学年四川省自贡市九年级(上)第一次月考数学试卷一、精心选一选(每小题4分,共40分)1.方程2x(x+3)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.若有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=33.关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k<﹣1D.k>﹣14.若关于x的一元二次方程x2+2x+k=0没有实数根,则一次函数y=(k﹣1)x+3的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限5.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1B.a≠﹣1C.a≠±1D.为任意实数6.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=97.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)=63%B.60.05(1+2x)2=63C.60.05(1+x)=63%D.60.05(1+x)2=638.设x1,x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A.19B.25C.31D.309.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.10.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375B.x(x+10)=375C.2x(2x﹣10)=375D.2x(2x+10)=375二、想好了再填(每小题4分,共20分)11.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为.12.如果关于x的方程mx2﹣2x+1=0有两个实数根,那么m的取值范围是.13.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为.14.已知m是方程x2﹣2x﹣7=0的一个根,则m2﹣2m+1=.15.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的序号是.三、解答题(本大题共32分)16.选取最恰当的方法解方程:①(x﹣1)(x﹣3)=0②x2+2x﹣224=0(用配方法解)③3x2﹣7x+4=0④x(2x+3)=4x+6.四、解答题(本大题共20分)17.已知关于x的方程x2﹣4x+3a﹣1=0有两个实数根.(1)求实数a的取值范围;(2)若a为正整数,求方程的根.18.如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为18m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.五、解答题(本大题共24分)19.我们知道:对于任何实数x,①∵x2≥0,∴x2+1>0;②∵(x﹣)2≥0,∴(x﹣)2+>0.模仿上述方法解答:求证:(1)对于任何实数x,均有:2x2+4x+3>0;(2)不论x为何实数,多项式3x2﹣5x﹣1的值总大于2x2﹣4x﹣2的值.20.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),(1)求二次函数和一次函数解析式.(2)求△OAB的面积.六、解答题(本大题共14分)21.已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.2016-2017学年四川省自贡市富顺九年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选(每小题4分,共40分)1.方程2x(x+3)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先将方程整理为一般形式,再根据根的判别式的值与零的大小关系即可判断.【解答】解:原方程可化为2x2+6x=0,∵△=b2﹣4ac=36﹣4×2×0=36>0,∴方程有两不相等的实数根.故选A.2.若有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=3【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.3.关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k<﹣1D.k>﹣1【考点】根的判别式.【分析】利用根的判别式进行计算,令△>0即可得到关于k的不等式,解答即可.【解答】解:∵关于x的方程x2﹣2x+k=0有两个不相等的实数根,∴△>0,即4﹣4k>0,k<1.故选A.4.若关于x的一元二次方程x2+2x+k=0没有实数根,则一次函数y=(k﹣1)x+3的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限【考点】一次函数图象与系数的关系;根的判别式.【分析】根据判别式的意义得到△=22﹣4k<0,解得k>1,然后根据一次函数的性质可得到一次函数y=(k﹣1)x+3图象经过第一、三象限,且与y轴的交点在x轴上方.由此得出答案即可.【解答】解:根据题意得△=22﹣4k<0,解得k>1,∵k﹣1>0,3>0,∴一次函数y=(k﹣1)x+3图象经过第一、二、三象限.故选:B.5.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1B.a≠﹣1C.a≠±1D.为任意实数【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选C.6.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B7.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)=63%B.60.05(1+2x)2=63C.60.05(1+x)=63%D.60.05(1+x)2=63【考点】由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设从2008年起我省森林覆盖率的年平均增长率为x,根据“2010年实现全省森林覆盖率达到63%的目标”,可列出所求的方程.【解答】解:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=63%.即60.05(1+x)2=63.故选D.8.设x1,x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A.19B.25C.31D.30【考点】根与系数的关系.【分析】根据一元二次方程的根与系数的关系,即可求得x1与x2的和与积,所求的代数式可以用两根的和与积表示出来,即可求解.【解答】解:∵x1,x2是方程x2+5x﹣3=0的两个根,∴x1+x2=﹣5,x1x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1x2=25+6=31.故选:C.9.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.10.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375B.x(x+10)=375C.2x(2x﹣10)=375D.2x(2x+10)=375【考点】由实际问题抽象出一元二次方程.【分析】如果设游泳池的长为xm,那么宽可表示为(x﹣10)m,根据面积为375,即可列出方程.【解答】解:设游泳池的长为xm,那么宽可表示为(x﹣10)m;则根据矩形的面积公式:x(x﹣10)=375;故选A.二、想好了再填(每小题4分,共20分)11.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为15.【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】利用因式分解法解方程得到x1=3,x2=6,再根据三角形三边的关系得等腰三角形的底为3,腰为6,然后计算三角形的周长.【解答】解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,所以等腰三角形的底为3,腰为6,这个等腰三角形的周长为3+6+6=15.故答案为15.12.如果关于x的方程mx2﹣2x+1=0有两个实数根,那么m的取值范围是m≤1且m≠0.【考点】根的判别式.【分析】若m=0,方程化为一元一次方程,只有一个解,不合题意;故m不为0,方程即为一元二次方程,根据方程有两个实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集,即可得到m的范围.【解答】解:mx2﹣2x+1=0有两个实数根,当m=0时,方程化为﹣2x+1=0,解得:x=,不合题意;故m≠0,则有b2﹣4ac=4﹣4m≥0,解得:m≤1,则m的取值范围是m≤1且m≠0.故答案为:m≤1且m≠013.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为3.【考点】根与系数的关系.【分析】根据根与系数的关系,先求出x1+x2与x1x2的值,然后再把它们的值整体代入所求代数式求值即可.【解答】解:根据题意可得x1+x2=﹣=5,x1x2==2,∴x1+x2﹣x1•x2=5﹣2=3.故答案为:3.14.已知m是方程x2﹣2x﹣7=0的一个根,则m2﹣2m+1=8.【考点】一元二次方程的解.【分析】先利用一元二次方程的解的定义得到m2﹣2m=7,然后利用整体代入的方法计算m2﹣2m+1的值.【解答】解:∵m是方程x2﹣2x﹣7=0的一个根,∴m2﹣2m﹣7=0,∴m2﹣2m=7,∴m2﹣2m+1=7+1=8.故答案为8.15.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b
本文标题:自贡市富顺2017届九年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7500413 .html