您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 市场营销 > 海岛(礁)测绘技术国家测绘地理信息局重点实验室
海岛(礁)测绘技术国家测绘地理信息局重点实验室科学研究年度综述一、国内外发展现状(一)海洋测绘基准海洋测绘基准理论研究不仅包括全球、区域和局部基准的建立、维持和更新,而且包括数据采集方法和数据处理理论,建立无缝海洋测绘基准,实现基准统一,提供不同基准之间的转换和传递,保证海洋测绘基准的高精度和现势性,以更好的服务于经济建设和国防建设。为此,国际上重点对数据采集方法和技术进行研究,尽可能多的高精度采集相关数据,如验潮、船载重力、航空重力、卫星重力、卫星测高、地形测量、海洋测深、GNSS、水准测量等,研究多源数据融合处理方法,将传统的大地测量边值问题进行拓展,如固定边值问题、测高重力边值问题、GNSS重力边值问题、区域边值问题等。由于数据量太大,将单一算法拓展为多元算法、并行计算、乃至云计算。利用卫星测高技术对海洋进行长期观测,获得了高精度海洋资料,为海洋大地测量、物理海洋和地球物理等研究提供了基础数据。我国于2011年8月发射了首颗测高卫星HY-2A,目前该卫星正处于测试阶段。国际上目前在轨的测高卫星主要有美国Jason-1/2、ESA的EnviSat、CRYOSAT-2等。卫星测高在开阔深海精度达到了厘米量级,但是在近海由于地形、地球物理环境和硬件响应等的影响精度严重降低。如果提供测高在近海的精度是当前国际上测高领域的重要研究内容,为此近年连续举行多次COSATAL-测高会议,以此推动国际测高在近海的应用。重力作为一类基本观测量,在海洋测绘中具有重要作用,是区域大地水准面精化的主要数据源,主要有船测重力、航空重力、卫星重力等方式,它们分别对应于不同波段的重力信息。进入21世纪以来,美国和俄罗斯等研发了高精度陆海两用重力仪,同时德国发射了CHAMP卫星、美国和德国合作发射了GRACE卫星、ESA发射了GOCE。CHAMP是利用高低卫星跟踪卫星方式探测重力场,GRACE是以低低卫星跟踪卫星方式为主探测重力场,GOCE是以卫星重力梯度方式为主探测地球重力场,它们提供了大量对地观测数据,包括海洋重力资料。美国推出了最新的地球重力场模型EGM2008,丹麦利用最新观测数据推出了DNSC08GRA模型和DTU10。海平面变化是在全球变暖、构造运动和人类活动等影响下的结果。利用卫星监测开阔深海的海平面变化已经到达了很高的精度,如利用TOPEX/Poseidon卫星监测的结果为每年2.6mm。由于近海测高数据质量下降,近海潮汐模型精度也有待于改善,卫星测高给出的海平面变化精度较差。而验潮站位于岸边,受到严重的近岸海洋动力学和海底地形的影响,具有显著的区域性特征,其代表性较差。因此,要集成重力、验潮、测高、水准、GNSS以及温盐、水文、冰川和大气等多源数据,才能更好的研究海平面变化。“十一五”年以来,我国执行国家908专项和927工程,对我国海域和海岛礁进行了海洋调查和测绘,采集了大量数据,这也为本研究提供了数据源。在浙江舟山群岛海域进行了海岛礁测绘技术集成和示范应用,对GNSS、重力、无人表面船、无人机等多技术进行了测试,获得了初步结果。(二)海底探测我国海洋广袤,海洋资源丰富,当前我国重点发展海洋经济,国务院已批鲁浙粤海洋经济发展试点方案,而海底声学反演和分类为海底资源调查(油气、天然气水合物、多金属结核、富钴结壳、硫化物等)、海洋工程应用(跨海大桥、航道、光缆路由等)、海洋渔业研究(渔业养殖、捕捞、管理)、海洋环境保护、海洋军事应用(潜艇、舰船航行安全)、海洋科学研究(动力地貌学、构造地貌学等)等等方面提供基础数据和重要依据。由于海底范围广袤,依靠水下摄影、拖网、抓斗取样等方式获得大面积的海底底质和地层结构分布情况,效率极低,借助声学调查手段实现海底参数反演和自动分类是目前国际上最为有效的方法。利用声学遥测技术实现海底底质和地层结构分类,一直是军民研究的热点之一。重磁震等地球物理勘探成果的联合反演是解决复杂地质问题所用的综合地球物理解释方法,是目前可信的定量的综合地球物理解释技术,是联合应用多种地球物理信息,通过反演地质体的岩石物性和几何参数来求得同一个地下地质和地球物理模型的技术。自上世纪80年代以来,地球物理场联合反演技术已经取得了长足发展,发展了两两地球物理参数之间互为约束的反演技术及更高精度的联合反演计算方法。随着重磁三维技术的发展,现已发展到三维基础上的联合反演综合研究,主要有约束外推法、异常剥离法、顺序修正法和统一修正法等三维联合反演方法。这些方法对于地震资料信噪比低的山前带、盐下构造带、火山岩发育区、深层岩体的研究都具有重要作用,在高成熟区和复杂区以及油气预测与油田开发中都具有很好的应用前景,是今后反演方法研究的一个重要方向,也将是重、磁向目标勘探领域发展的一个重要方向。国内外研究者在海底探测与声学反演做了大量的工作,采用的设备主要有单波束探测仪、侧扫声呐、多波束声呐以及浅地层剖面仪。国内外研究者依据Lambert、CMST、Jackson、Kirchoff等模型或法则,从数字信号处理、数字图像处理、数学分析、信息论等多种手段出发,得到了许多统计特征,其中研究最多、使用最普遍的是:海底衰减系数、海底反射系数、海底回波数据的能量函数和海底反向散射强度。经过主成分分析,提取主要特征,以神经网络或统计分类实现声学海底底质或地层结构分类。声学反演的关键在于寻找海底回波信号中最能反映海底底质或结构类型信息的特征参量,由于海洋环境及海底交互的复杂性,仍有许多科学问题未解决,未达到完全实用的地步。首先,声学散射模型远未达到完善。目前存在的声学散射模型或仅针对具体几种沉积物,或仅针对特定的海域,或仅针对单一的设备,针对典型声学设备在不同海域、不同海洋环境、不同底质、不同入射角的散射模型还需进一步验证和完善。其次,各种声学探测设备也存在一定的工作缺陷。对于单波束探测仪或浅地层剖面仪,主要提取反射系数、能量函数、时频分析等分类特征,由于只能获得船只正下方的区域信息,当用于大面积海域底质或结构分类时,存在工作强度大、效率低的缺点,且由于其波束宽,造成其测量精度低、分辨率低,特别在深水环境,分类结果不太可靠;对于多波束声呐或侧扫声呐,主要提取均值、分位数、标准差、频谱、直方图、纹理、斜入射反向散射强度与入射角的关系等分类特征。多波束系统除了可以得到近垂直入射的声波外,还可以得到多角度散射信号,信息量大,但难以得到较深地层的信息。由于设备的限制,正下方回波信息不可靠,很难归一化。基于声呐图像的纹理特征不适用于低频声呐。在我国,海底声学特性的研究比较薄弱,在海底参数的数据收集和分类理论模型的建立等方面与国外的差距仍然很大。由于实验设备、实验方法等限制,国内对海底沉积物声学分类技术的研究大都仅限于基础方面,或是针对特定的海域,或是针对特定的沉积物类型,或仅针对一至二种设备,实用性不太高。由于海底环境的复杂性,基于单一声学设备或技术进行参数反演和分类很难达到理想效果。(三)GNSS在海岛(礁)测绘中的应用对于海洋三维大地测量基准的建立,可采用高精度的静态GNSS定位技术将已建成的陆地三维定位基准扩展到沿海地区及海岛,形成能满足各种海洋定位要求的基准体系;另外,利用GNSS定位技术,建立海区CORS网,通过接收卫星信号和差分改正信息实现空间动态定位基准的传递和对误差的控制,以确保海洋测绘产品的一致性和可拼接性。再者,利用GNSS建立与海洋邻国大地坐标系及国际地球参考框架(ITRF)之间的基准传递坐标转换关系,从而实现地图图件之间、不同投影系统之间的转换关系。对于沿海岸线或沿海陆路区域,通常采用基于GNSS实时动态作业模式的RTK技术和基于CORS的RTK技术;较远的海区则较多采用GNSS接收机与其他设备联合定位。在信息采集方面,随着遥感信息的采集和发展,GPS辅助与信息采集的测量平台也由单一船载向与机载、星载相结合转化。本世纪80年代,随着国外卫星遥感信息的引人,我国使用遥感方法确定海洋几何要素的工作开始起步,并逐步引向深人。海军海洋测绘研究所先后利用TM多光谱资料和SPOT资料在岛礁定位、岸滩监测、岸线确定、浅海测深、海图修测等方面做了大量的工作。武汉测绘科技大学利用卫星遥感手段提取了南极中山站附近冰面的高程信息,绘制成冰面地形图。GPS在水下地形测绘的应用,主要是利用GPS接收机与水声仪器组合,进行定位和水深测量,再利用电子记录手簿及利用计算机和绘图仪组成水下地形测量自动化系统,测绘水深图、断面图和水下地形模型等。(四)遥感在海岛(礁)测绘中的应用通过卫星遥感技术监测了地中海希腊克里特岛生态系统的环境变化(重点监测了日益加剧的放牧业对克里特岛两个山区生态系统产生的影响)。提出了基于遥感的浅海水下地形反演的一个简单模型,使星载SAR水下地形的定量探测迈出了重要的一步。Vogezlnag等人所开发的基于ERS一1/2SAR资料的“水深测量系统(BAS)”,他们利用这套系统在北海进行了浅海水下地形的反演,其结果达到了惊人的30cm的误差。美国国际开发署资助的东部非洲坦桑尼亚/肯尼亚海岸带土地利用与土地覆被变化及对近海海洋生态系统的影响的课题,利用美国陆地卫星和航天飞机获取的三维地形数据及全球定位系统辅助的地面考察,对东部非洲海岸带1990~2000年的土地利用与土地覆被变化进行了制图及定量分析,从而使遥感与地理信息技术在无现存数据地区的应用进行了有成效的探索。KevinWhite等利用Landsat卫星的图像对尼罗河三角洲河口地区的海岸线变化进行了对比,实现了对海岸线的动态监测。Lodhi等经过试验指出使用归一化植被指数(NDVI)可以减少海岸边悬浮泥沙的影响。淤泥质海岸在海水浑浊的地方近红外波段的反射率是比较高的,而在红光波段对于完全暴露的淤泥质海岸反射率是低的,但是对于混浊海水的反射率比较高,通过这两个波段对不同物质的反射率的区别把单纯的淤泥质海岸与浑浊海水分开。Joo-HyungRyu等根据这一原理,对韩国Gomso湾淤泥质海岸使用不同波段的TM图像进行波段运算,去除了海水中悬浮泥沙对海岸线解译的影响。Jong-SenLee最早指出了SAR图像提取水边线的障碍在于噪声和强烈的暴风与海浪的反射信号所产生的干扰,他提出的斑点平滑算法和Mason与Davenport提出的半自动算法都能有效的去除SAR图像中的噪声。MareusSehwabiseh等提出了利用干涉测量法(interferometry)对SAR图像进行校正,并在此基础上做出了对水边线进行精确提取的算法。这个算法的主要思路是在图像上检测到较大的干涉值梯度的位置,从而使图像上显示出连续的陆地和与之不连续的水体之间的边界。我国学者利用遥感技术对海岛生态、近海水深反演、海岸带土地利用、岸线提取等方面也进行了探索。中国复旦大学赵斌等人应用三套陆地卫星LANDSETTM和ETM遥感数据集对中国崇明岛东海岸1990-2000年这10年内生态系统服务功能价值变化的分析,给出了研究区域生态系统服务功能价值的等级评价,得出了该区域生态系统服务功能下降了62%的结论。黄韦良和傅斌等仔细研究了浅海水下地形的SAR成像机理,并通过模拟仿真计算了浅海水下地形在不同雷达参数、不同海况条件下及不同地形条件下的成像,得出了SAR水下地形成像的最佳雷达参数(波段、极化和入射角)、最佳海况条件(风速风向、流速流向)和最佳地形条件(坡度、坡向和水深)。中国科学院等相关单位依靠遥感与地理信息系统技术,开展了全国范围内的资源与环境遥感动态监测,海岸带土地利用/覆盖变化研究是其中一项重要的研究内容,成功地利用遥感与地理信息系统技术建成了我国20世纪80年代末期至90年代末期的土地利用动态信息系统,并根据海岸带土地覆盖与土地利用的分类系统,利用LandsatETM和部分中巴资源卫星影像,首次完成了全国1:10万海岸带土地利用与滩涂空间变化遥感调查,建成了全国海岸带滩涂数据库系统,揭示了土地利用变化的时空规律,分析了这些规律的主要政策、经济和自然形成原因。(五)地理信息系统在海岛(礁)测绘中的应用地理信息系统在海岛(礁)测绘中的
本文标题:海岛(礁)测绘技术国家测绘地理信息局重点实验室
链接地址:https://www.777doc.com/doc-7529474 .html