您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 电子控制悬架系统的检修
电子控制悬架系统的检修组员:段家明、王继鹏、何节、陈长音、赖德灶、何海瑞汽车的操控性和舒适性越来越受到人们的重视,车辆悬架系统在汽车的操控性和舒适性方面起着至关重要的作用。悬架是车身与车轮之间的一切传力连接装置的总称。它的作用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩都传递到车身上,以保证汽车的正常行驶。采用电子控制主动悬架系统不仅可提高乘坐舒适性,而且能够实现整车高度的自动升降,大大提高了车辆的舒适性,所以电子控制主动悬架系统被认为是汽车的发展趋势之一。一、概述:二、功能:•通过控制调节悬架的刚度和阻尼力,使汽车的悬架特性与道路状况和行驶状态相适应。其基本功能如下:•1.车高调整•2.减振器阻尼力控制•3.弹簧刚度控制•以电脑作为控制核心,对汽车悬架系统参数,包括弹簧放度、悬架阻尼、侧倾刚度和车身高度等实行适时控制已经成为现实•当前,对汽车悬架的控制主要有以下几种:•(1)以改善坏路行驶能力和高速操纵稳定性为目的的车高控制;•(2)以改善舒适性和操纵稳定性为目的的减振器阻尼控制;•(3)以改善舒适性和操纵稳定性为目的的弹簧刚度控制。•(4)以改善操纵稳定性为目的的侧倾刚度控制。•(5)综合以上各种考虑的综合性悬架。•在汽车行驶过程中,由于路面的不平整或者汽车自身运动状态的改变,会使汽车表现出各种运动形态,包括车身的垂直振动、俯仰运动和侧倾运动等。•垂直振动+前后俯仰+左右侧倾(路面不平)(加速、制动)(转弯)综合进行控制汽车行驶时的运动形式三、现代汽车对悬架系统的要求•综合考虑上述因素,现代汽车可以对悬架提出如下要求。•(1)具有足够的强度。•(2)具有适当的弹簧刚度,且能根据载荷的变化而变化。•(3)具有足够的侧倾刚度。•(4)具有良好的吸振能力(阻尼力可以调节)。•(5)能够保证车轮正确的定位参数。•现代汽车悬架控制系统:是指利用有源或无源控制元件构成的闭环控制系统对汽车悬架实行主动控制的装置,它能根据车辆的运行状况和路面情况主动作出反应,抑制车身的各种振动,使悬架始终处于最佳减振状态。•目前,悬架控制系统可实现对车高、悬架弹簧刚度和减振器阻尼、侧倾刚度等方面的主动调节。•与其他控制系统一样,半主动悬架控制系统一般也包含传感器、电脑和执行机构三个组成部分(能源结构)。四、组成:•悬架控制系统的传感器有多种型式,他们在系统总承担着将汽车行驶路况(汽车的振动)和车速及启动、加速、转向、制动等工况转变为电信号,并输送到电脑。•车身加速度传感器:检测车身振动,间接地也可反映行驶的路面状况和车身横向运动状况(高级轿车会有垂直加速度传感器如梅赛德斯)。•车身位移传感器:检测车身与车桥的相对位移,反映车身的平顺性和车身高度。•车速传感器:检测车轮转速,反映车速和计算车身的侧倾量。1、传感器:•转向盘转角传感器:检测转向盘转角,计算车身侧倾。•制动压力开关:检测制动管路压力,判断汽车制动情况。•制动灯开关:检测制动灯电路通断,判断汽车制动状况。•节气门位置传感器:检测节气门开度,反映汽车加速状况。•门控灯开关:检测门控灯电路通断,判断乘员状况。2、电子控制单元3、执行机构(一)阻尼力控制执行机构1.可调阻尼力减振器2.直流电动机式执行器(二)侧倾刚度控制的执行机构1.横向稳定杆执行器2.液压缸(三)弹簧刚度控制的执行机构(四)车高控制的执行机构•1.按传力介质的不同分:气压式、油压式•2.按控制理论的不同分有级半主动式(阻尼力有级可调)半主动式无级半主动式(阻尼力连续可调)全主动式•3.按频带和能量消耗不同分慢全主动式主动式电磁阀驱动的油气主动式•4.按驱动机构和介质不同步近电动机驱动的空气主动式五、分类:车身状态传感器和开关给ECU提供加速度、位移及其他目标参数等信号,ECU根据各传感器送来的信号进行运算分析,向悬架执行元件发出指令信号,使执行元件(如阻尼调节步进电机)产生一定的机械动作,调节悬架参数的执行器(电磁阀、步进电机等)改变悬架的刚度、阻尼系数和车身高度,使车辆在行驶过程中具有良好的平顺性和操纵稳定性。六、原理:控制项目功能自动高度控制不管乘客和行李重量情况如何使汽车高度保持某一个恒定的高度位置,操作高度控制开关能使汽车的目标高度变为“正常”或“高”的状态高车速控制当高度控制开关在“height(高)”位置时,汽车高度会降低到“正常”状态,这就改善高车速行驶时的空气动力学和稳定性驻车控制当点火开关关断后因乘客重量和行李重量变化而使汽车高度变为高于目标高度时,能使汽车高度降低到目标高度,这就能改善汽车驻车时的姿势1、车身高度控制:(LS400)2、减振力(阻尼力)与弹簧刚度控制功能控制项目功能防侧倾控制使弹簧刚度和减振力变成“坚硬”状态。该项控制能抑制侧倾而使汽车的姿势变化减至最小,以改善操纵性能防栽头控制使弹簧刚度和减振力变成“坚硬”状态。该项控制能抑制汽车制动时栽头而使汽车的姿势变化减至最小防下坐控制使弹簧刚度和减振力变成“坚硬”状态。该项控制能抑制汽车加速时后部下坐,而使汽车的姿势变化减至最小高车速控制使弹簧刚度变成“坚硬”状态和使减振力变成“中等”状态,该项控制能改善汽车高车速时的行驶稳定性和操纵性不平整道路控制使弹簧刚度和减振力视需要变成“中等”或“坚硬”状态,以抑制汽车车身在悬架上下垂,从而改善汽车在不平坦道路上行驶时的乘坐舒适性。颠动控制使弹簧刚度和减振力变成“中等”或“坚硬’状态.它能抑制汽车在不平坦道路上行驶时的颠动。跳振控制使弹簧刚度和减振力变成“中等”或“坚硬”状态,该项控制能抑制汽车在不平坦道路上行驶时的上下跳振。LS400电控悬架系统主要是由压缩空气系统和电子控制系统两部分组成。主要部件有:车辆高度控制阀,悬架高度传感器,汽车转向角传感器,压缩空气排气阀,悬架控制电脑、执行器、各种手动控制开关和汽车仪表板上的各种显示仪表、指示灯等。3、LS400电控悬架系统的构成:悬架减振力(阻尼力)、弹簧刚度工作原理LS400悬架结构车两使用中,悬架ECU通过悬架高度位置传感器检测车身(底盘)的高度,如高出规定,则ECU使空气压缩机工作,同时打开高度电磁阀,压缩空气经过干燥器干燥后,经高度电磁阀,进入气压缸,使车身(底盘)升高。如检测车身底盘,高度低于规定,则打开高度电磁阀和排气阀,在车身重力的作用下,使气体排出气压缸,从而降低车身(底盘)高度。其中,压缩机只在升高的过程中工作其余时间,均不工作。1、车身高度工作原理:2、空气弹簧的变刚度工作原理:当空气阀转到如图的位置时,主、副气室的气体通道被打开,主气室的气体经空气阀的中间孔与副气室的气体相通,相当于空气弹簧的工作容积增大,空气弹簧的刚度为“软”。当空气阀转到如图所示的位置时,主、副气室的气体通道被关闭,主、副气室之间的气体不能相互流动,此时的空气弹簧只有主气室的气体参加工作,空气弹簧的刚度为“硬”。3、变阻尼减振器的阻尼力调节特性:阻尼力较弱时阻尼力中等时阻尼力较强时4、主要部件:1)、空气压缩机空气压缩机由活塞和曲柄连杆机构组成,直流永磁电动驱动,具有大扭矩和速起动等特点,2)空气干燥器空气干燥器用于去除系统内由于空气压缩而产生的水分。为使结构紧凑,排气电磁阀、空气干燥器装在一起。空气干燥器安装在高度控制阀和排气阀之间,内部充满了硅胶。3)排气电磁阀高度控制排气电磁阀安装于空气干燥器和干燥器的末端,当接收到悬挂控制电脑发出降低悬挂高度的指令时,即将系统中的压缩空气排出4)高度控制电磁阀高度控制电磁阀安装于空气干燥器和气动减振器之间,为一电磁阀。用于控制汽车悬挂的高度调节。高度控制电磁阀由电磁阀、阀体等组成。5)空气管空气悬架系统一般采用钢管和尼龙软管作为空气管。钢管用于固定在车身上的前、后高度控制阀之间的固定管道;尼龙软管用于诸如空气弹簧与高度控制阀之间的有相对运动的管道。尼龙软管采用单触式接头,以方便维修和具有良好的密封性。6)气动减振器空气悬架系统有4个气动减振器,每个气动减振器都包括一个可变化阻尼力的减振器和可变化弹性系数的空气弹簧,7)电磁式悬架调节执行器电磁式悬架调节执行器由步进电机驱动。步进电机装在悬架调节执行器内,由定子和线圈以及永磁转子组成。定子有两个12极的铁芯,相互错开半齿而对置,两个线圈绕在两个铁芯上,但绕线方向相反。转子则是一个具有12极的永久磁铁。8)线性式高度传感器线性式高度传感器的安装位置如图线性式高度传感器利用因悬架位移量的变化而造成电阻器阻值的变化,得到线性式的输出,这种传感器具有检测精度高的特点。9)加速度传感器加速度传感器用于测量车身的垂直加速度。加速度传感器共有3个,两个前加速度传感器分别装在前左、前右高度传感器内;一个后加速度传感器装在行李箱右侧的下面。这3个加速度传感器分别检测车身的前左、前右和后右位置的垂直加速度。车身后左位置的垂直加速度则由悬架ECU从这3个加速度传感器所获得的数据推导出来。10)转角传感器转角传感器外形结构如图,该传感器位于转向盘下面,装在组合开关总成内,用于检测汽车转弯的方向和转弯的角度。转向传感器由一个信号盘(有缝圆盘)和两个遮光器组成。每个遮光器有一个发光二极管和光敏晶体管,两者相互对置,并固定在转向柱管上。信号盘沿圆周开有20条光缝,它被固定在方向盘主轴上,随主轴转动而转动。七、检修:(以凌志LS400为例)电控悬架电路图连接器各接线端子与ECU连接对象的对应关系1、基本检查对电控悬架系统进行检修时,应先进行基本检查,以确认电控悬架的故障性质,避免将故障复杂化。基本检查的内容有:车身高度调整功能检查、减压阀检查、漏气检查和车身高度初始调整。检查轮胎气压是否正确。检查汽车高度。起动发动机,将高度控制开关从“NORM”位置切换到“HIGH”位置。检查电控悬架完成高度调整所需的时间和汽车车身高度的变化量。正常时,在升高过程中,按下高度控制开关到压缩机启动时间约为2S,从压缩机启动到完成高度调整约需20~40mS,车高的调整为10~30mm。在降低过程中,按下高度控制开关到排气电磁阀打开时间约为2S,从压缩机启动到完成高度调整约需20~40mS,车高的调整为10~30mm。2、车身高度调整功能检查打开点火开关,短接悬挂系统高度控制接插头中端子3和6,如图所示,开启压缩机,等待一段时间后,检查减压阀应有空气逸出(注意:连接时间不能超过15S)。然后将点火开关关闭。清除故障代码(因迫使压缩机运行时,悬架ECU会记录下故障代码)。3、排气阀的检查高度控制连接器检查各管路有无压缩空气泄漏。步骤如下:①将肥皂水涂在所有空气管路接头上。②在压缩机连接器端子之间加12V电压,使压缩机运转,在空气管路中建立空气压力。③检查空气管路接头处是否有气泡出现。④如果有气泡出现,则表明有漏气现象,此时,应进行必要的修理。4、漏气检查此项调整是使车身初始高度处于标准范围,以避免由些引起的故障误诊断。可通过调节悬挂高度传感器的调节杆来调节悬挂高度,如图所示。前悬挂高度传感器调节杆长度为53.5毫米,后悬挂高度传感器调节杆长度为27.5毫米。调节调节杆螺母旋转一圈,调整高差4毫米;螺母在调节杆移动l毫米,相应车高变化2毫米。前悬挂高度传感器调节杆可调极限为8毫米,后悬挂高度传感器调节杆可调极限为11毫米。在进行汽车高度调整时,将汽车停放在水平地面上,高度控制开关处于NORM位置。5、车身高度初始调整高度位置传感器连接杆长度的调整6、故障自诊断1)故障码调取①将点火开关转到“接通”(ON)的位置。②用跨接线跨接诊断接头上的“Tc和E1”两端头③观察仪表板上高度控制“正常”指示灯(NORM)或高度指示灯(HEIGHTHI)的闪烁来读取故障代码。④数该灯闪烁和间歇次数,第一次闪烁代表第一位故障代码的数字,在停歇一次后,数第二次闪烁的次数,它代表故障代码的第二位数字。如果故障代码不止一个,将会有一个较长的间歇,然后显示下一个故障代码的第一位和第二位数字。如果微机内存储的代码多于一个,则由小数字向大数字逐个显示。⑤记录故障代码。⑥根据厂家维修手册的资料了解故
本文标题:电子控制悬架系统的检修
链接地址:https://www.777doc.com/doc-75421 .html