您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 济宁市兖州区2016-2017年九年级上期中数学试卷含答案解析
山东省济宁市兖州区2016-2017学年九年级(上)期中数学试卷(解析版)一、选择题:本大题共10小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,不选或选出的答案超过一个均记零分,本大题共30分.1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.53.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°4.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=195.方程2x2=3x的解为()A.0B.C.D.0,6.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°7.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=458.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m29.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=010.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1B.2C.3D.4二、填空题:本大题共5小题,每小题3分,共15分,要求只写最后结果.11.已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=.12.方程(x﹣1)2=4的根是.13.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.14.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=.15.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共7小题,共55分,解答应写出文字说明和推理步骤.16.(7分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.17.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.18.(7分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.19.(8分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.20.(8分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?21.(9分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.22.(9分)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0),B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标.2016-2017学年山东省济宁市兖州区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,不选或选出的答案超过一个均记零分,本大题共30分.1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的定义判断即可.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.2.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.5【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.【点评】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.3.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出结论.【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.【点评】本题考查了圆心角、弧、弦的关系,圆周角定理;熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.4.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19【考点】解一元二次方程-配方法.【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.方程2x2=3x的解为()A.0B.C.D.0,【考点】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.6.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°【考点】旋转的性质.【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠CAC′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.7.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选A.【点评】此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.8.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2【考点】二次函数的应用.【分析】设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.【解答】解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,ymax=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.【点评】此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.9.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0【考点】二次函数的图象.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题:本大题共5小题,每小题3分,共15分,要求只写最后结果.11.已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=.【考点】一元二次方程的解.【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=0代入方程,即可得到一个关于a的方程,即可求得a的值.【解答】解:根据题意得:0+0+2a﹣1=0解得a=.故答案为:.【点评】本题考查了一元二次方程的解.一元二次方程的根一定满足该方程的解析式.12.方程(x﹣1)2=4的根是3或﹣1.【考点】解一元二次方程-直接
本文标题:济宁市兖州区2016-2017年九年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7542720 .html