您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 孝感市八校联考2016届九年级上月考数学试卷含答案解析
2015-2016学年湖北省孝感市八校联考九年级(上)月考数学试卷(12月份)一、选择题(共10题,每题3分共30分)1.下列是二次函数的是()A.y=ax2+bx+cB.y=+xC.y=x2﹣(x+7)2D.y=(x+1)(2x﹣1)2.剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6B.y=(x﹣4)2﹣2C.y=(x﹣2)2﹣2D.y=(x﹣1)2﹣34.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)5.某服装店进价为30元的内衣,以50元售出,平均每月能售出300件,经试销发现每件内衣每涨价10元,其月销售量就减少10件,为实现每月利润8700元,设定价为x元,则可得方程()A.300(x﹣30)=8700B.x(x﹣50)=8700C.(x﹣30)[300﹣(x﹣50)]=8700D.(x﹣30)(300﹣x)=87006.如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定7.若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()A.﹣B.C.D.k≥﹣且k≠08.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°9.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣210.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(共6题,每题3分共18分)11.方程x2+8x+7=0的根为__________.12.关于x的一元二次方程(a﹣1)x2+x+a2+3a﹣4=0有一个实数根是x=0,则a的值为__________.13.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有__________个.14.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=﹣(x﹣2)2+k的图象上,则y1,y2,y3的大小关系是__________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是__________.16.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是__________.三、解答题(共8题,共72分)17.解下列方程:(1)﹣x2﹣3x+6=0(2)7x(3﹣x)=3(x﹣3)18.请在同一坐标系中画出二次函数①y=x2;②y=(x﹣2)2的图象.说出两条抛物线的位置关系,指出②的开口方向、对称轴和顶点坐标及增减性.19.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,﹣1),B(﹣5,﹣4),C(﹣2,﹣3)(1)作出△ABC向上平移6个单位,再向右平移7个单位的△A1B1C1;(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标;(3)将△ABC绕点O顺时针旋转90°后得到△A3B3C3,请你画出旋转后的△A3B3C3.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?22.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.23.如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若CD=10,EB=5,求⊙O的直径.24.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.2015-2016学年湖北省孝感市八校联考九年级(上)月考数学试卷(12月份)一、选择题(共10题,每题3分共30分)1.下列是二次函数的是()A.y=ax2+bx+cB.y=+xC.y=x2﹣(x+7)2D.y=(x+1)(2x﹣1)【考点】二次函数的定义.【分析】根据形如y=ax2+bx+c(a≠0)是二次函数,可得答案.【解答】解:A、a=0时y=ax2+bx+c是一次函数,故A错误;B、y=+x不符合二次函数,故B错误;C、y=x2﹣(x+7)2是一次函数,故C错误;D、y=(x+1)(2x﹣1)是二次函数,故D正确;故选:D.【点评】本题考查了二次函数,形如y=ax2+bx+c(a≠0)是二次函数,注意二次项的系数不能为零.2.剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6B.y=(x﹣4)2﹣2C.y=(x﹣2)2﹣2D.y=(x﹣1)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【考点】坐标与图形变化-旋转.【专题】分类讨论.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.5.某服装店进价为30元的内衣,以50元售出,平均每月能售出300件,经试销发现每件内衣每涨价10元,其月销售量就减少10件,为实现每月利润8700元,设定价为x元,则可得方程()A.300(x﹣30)=8700B.x(x﹣50)=8700C.(x﹣30)[300﹣(x﹣50)]=8700D.(x﹣30)(300﹣x)=8700【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】设定价为x元,则每件内衣的利润为(x﹣30)元,销售的件数为[300﹣(x﹣50)],利用每一件的销售利润×销售的件数=总利润列出方程即可.【解答】解:设定价为x元,由题意得(x﹣30)[300﹣(x﹣50)]=8700.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,掌握销售问题中的基本数量关系是解决问题的关键.6.如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【考点】点与圆的位置关系;勾股定理;三角形中位线定理.【专题】压轴题.【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,即可求解.【解答】解:∵AC=6,AB=10,CD是斜边AB上的中线,∴AD=5,∵点O是AC中点,点P是CD中点,∴OP是△CAD的中位线,OC=OA=3,∴OP=AD=2.5,∵OP<OA,∴点P在⊙O内,故选A.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.7.若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()A.﹣B.C.D.k≥﹣且k≠0【考点】根的判别式.【分析】由于关于x的方程k2x2﹣(2k+1)x+1=0有实数根,①当k=0时,方程为一元一次方程,此时一定有实数根;②当k≠0时,方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此即可求出k的取值范围.【解答】解:∵关于x的方程k2x2﹣(2k+1)x+1=0有实数根,∴①当k=0时,方程为一元一次方程,此时一定有实数根;②当k≠0时,方程为一元二次方程,如果方程有实数根,那么其判别式△=b2﹣4ac≥0,即(2k+1)2﹣4k2≥0,∴k≥﹣,∴当k≥﹣,关于x的方程k2x2﹣(2k+1)x+1=0有实数根.故选B.【点评】本题考查了一元二次方程根的判别式的应用.此题要注意题干并没有说明方程一定是一元二次方程,因此要将所有的情况都考虑到.8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()
本文标题:孝感市八校联考2016届九年级上月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543307 .html