您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 邹城八中2017届九年级上第一次月考数学试卷含答案解析
2016-2017学年山东省济宁市邹城八中九年级(上)第一次月考数学试卷一、选择题(3分×10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=93.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣24.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x6.176.186.196.20y=ax2+bx+c﹣0.03﹣0.010.020.04A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.205.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x﹣1)=28D.x(x+1)=287.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1C.x=2D.x=38.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13B.11或13C.11D.129.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0B.x2﹣4x+4=0C.x2+4x+10=0D.x2+4x﹣5=010.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.二、填空题(3分×6=18分)11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.12.一个小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣4(t﹣1)2+5,则小球距离地面的最大高度是米.13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.16.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③b2﹣4ac>0;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;⑥方程ax2+bx+c=3有两个相等的实数根.其中正确的有.三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣3)2+2x(x﹣3)=0;(2)4x2﹣8x﹣1=0(用配方法解).18.已知x2﹣3x﹣6=0,求的值.19.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.20.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.21.某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.(1)若花草园的面积为100平方米,求x;(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个花草园的面积不小于88平方米时,直接写出x的取值范围.22.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲=,y乙=;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2016-2017学年山东省济宁市邹城八中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(3分×10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B3.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2【考点】二次函数图象与几何变换.【分析】根据图象右移减,上移加,可得答案.【解答】解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选:C.4.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x6.176.186.196.20y=ax2+bx+c﹣0.03﹣0.010.020.04A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20【考点】抛物线与x轴的交点.【分析】利用二次函数和一元二次方程的性质.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选C.5.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【分析】分别计算x=﹣4、﹣3、1时的函数值,然后比较大小即可.【解答】解:当x=﹣4时,y1=(﹣4)2+4×(﹣4)﹣5=﹣5;当x=﹣3时,y2=(﹣3)2+4×(﹣3)﹣5=﹣8;当x=﹣1时,y3=12+4×1﹣5=0,所以y2<y1<y3.故选B.6.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x﹣1)=28D.x(x+1)=28【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.7.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1C.x=2D.x=3【考点】二次函数的性质.【分析】由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.【解答】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选D.8.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13B.11或13C.11D.12【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】由一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,利用因式分解法求解即可求得等腰△ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.【解答】解:∵x2﹣8x+15=0,∴(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,即x1=3,x2=5,∵一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13;∴△ABC的周长为:11或13.故选B.9.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0B.x2﹣4x+4=0C.x2+4x+10=0D.x2+4x﹣5=0【考点】根与系数的关系.【分析】找出四个选项中二次项系数a,一次项系数b及常数项c,计算出b2﹣4ac的值,当b2﹣4ac大于等于0时,设方程的两个根为x1,x2,利用根与系数的关系x1+x2=﹣求出各项中方程的两个之和,即可得到正确的选项.【解答】解:A、x2+2x﹣4=0,∵a=1,b=2,c=﹣4,∴b2﹣4ac=4+16=20>0,设方程的两个根为x1,x2,∴x1+x2=﹣=﹣2,本选项不合题意;B、x2﹣4x+4=0,∵a=1,b=﹣4,c=4,∴b2﹣4ac=16﹣16=0
本文标题:邹城八中2017届九年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543396 .html